Skip to main content
Log in

Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4′-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone), one flavanone (5-hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure–function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Boonsuepsakul S, Luepromchai E, Rongnoparut P (2008) Charaterization of Anopheles minimus CYP6AA3 expressed in a recombinant baculovirus system. Arch Insect Biochem Physiol 63:13–21

    Article  Google Scholar 

  • Bullangpoti V, Wajnberg E, Audent P, Feyereisen R (2011) Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest Manag Sci 68:1255–1264

    Article  Google Scholar 

  • Burgos RA, Caballero EE, Sfinchez NS, Schroeder RA, Wikman GK, Hancke JL (1997) Testicular toxicity assesment of Andrographis paniculata dried extract in rats. J Ethnopharmacol 58:219–224

    Article  CAS  PubMed  Google Scholar 

  • Chao WW, Lin BF (2010) Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chao Lin Chin Med 5:17

    Article  Google Scholar 

  • Chenniappan K, Kadarkarai M (2008) Synergistic activity of Andrographis paniculata Nees extracts against the larvae of the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). J Ent Res Soc 10:13–22

    Google Scholar 

  • Correia MA, Ortiz de Montello PR (2005) Inhibition of cytochrome P450 enzymes. In: Ortiz de Montello PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum, New York, pp 247–332

    Chapter  Google Scholar 

  • David JP, Ismail HM, Chandor-Proust A, Paine MJI (2013) Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on earth. Philos Trans R Soc Lond B Biol Sci 368:1–11

    Article  Google Scholar 

  • Duangkaew P, Kaewpa D, Rongnoparut P (2011a) Protective efficacy of Anopheles minimus CYP6P7 and CYP6AA3 against cytotoxicity of pyrethroid insecticides in Spodoptera frugiperda (Sf9) insect cells. Trop Biomed 28:293–301

    CAS  PubMed  Google Scholar 

  • Duangkaew P, Pethuan S, Kaewpa D, Boonsuepsakul S, Sarapusit S, Rongnoparut P (2011b) Characterization of mosquito CYP6P7 and CYP6AA3: differences in substrate preferences and kinetic properties. Arch Insect Biochem Physiol 76:236–248

    Article  CAS  PubMed  Google Scholar 

  • Elango G, Rahuman A, Kamaraj C, Abduz Zahir A, Bagavan A (2010) Studies on effects of indigenous plant extracts on filarial vector Culex tritaeniorhynchus Giles. Parasitol Res 107:167–176

    Article  CAS  PubMed  Google Scholar 

  • Elimam AM, Elmalik KH, Ali FS (2009) Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Saudi J Biol Sci 16:95–100

    Article  PubMed Central  PubMed  Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533

    Article  CAS  PubMed  Google Scholar 

  • Fowler S, Zhang H (2008) In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status and methodologies and their utility for predicting drug–drug interactions. AAPS J 10:410–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gautum K, Kumar P, Poonia S (2013) Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegyti. J Vector Borne Dis 50:171–178

    Google Scholar 

  • Govindarajan M (2011) Evaluation of Andrographis paniculata Burm. F. (Family: Acantaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pacific J Trop Med 176–181

  • Govindarajan M, Sivakumar R (2012) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Dipetera: Culicidae). Parasitol Res 110:1607–1620

    Article  PubMed  Google Scholar 

  • Green CE, Hibbert SL, Bailey-Shaw YA, Williums LAD, Mitchell S, Garraway E (2008) Extraction, processing, and storage effects on curcuminoids and oleoresin yields from Curcuma longa L. grown in Jamaica. J Agric Food Chem 56:3664–3670

    Article  CAS  PubMed  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  CAS  PubMed  Google Scholar 

  • Hien PP, Gortnizka H, Kraemer R (2003) Rotenone — potential and prospect for sustainable agriculture. Omonrice 11:83–92

    Google Scholar 

  • Joffe T, Gunning R, Allen GR, Kristensen M, Alptekin S, Field L, Mand Moores GD (2011) Investigating the potential of selected natural compounds to increase the potency of pyrethrum against houseflies Musca domestica (Diptera: Muscidae). Pest Manag Sci 68:178–184

    Article  PubMed  Google Scholar 

  • Kaewpa D, Boonsuepsakul S, Rongnoparut P (2007) Functional expression of mosquito NADPH–cytochrome P450 reductase in Escherichia coli. J Econ Entomol 100:946–953

    Article  CAS  PubMed  Google Scholar 

  • Kaltenegger E, Brem B, Mereiter K, Kalchhauser H, Kahlig H, Hofer O, Vajrodayad S, Greger H (2003) Insecticidal pyrido[1,2-α]azepine alkaloids and related derivatives from Stemona species. Phytochemistry 63:803–816

    Article  CAS  PubMed  Google Scholar 

  • Kotze AC, Dobson RJ, Chandler D (2006) Synergism of rotenone by piperonyl butoxide in Haemonchus contortus and Trichostrongylus colubriformis in vitro: potential for drug-synergism through inhibition of nematode oxidative detoxification pathways. Vet Parasitol 136:275–282

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy C, Murugan K (2010) Effects of Andrographis paniculata Nees on growth, development and reproduction of malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Tropical Biomed 27:509–516

    CAS  Google Scholar 

  • Kuroyanagi M, Sato M, Ueno A, Nishi K (1987) Flavonoids from Andrographis paniculata. Chem Pharm Bull 35:4429–4435

    Article  CAS  Google Scholar 

  • Lahoz A, Vilà MR, Fabre M, Miquel JM, Rivas M, Maines J, Castell JV, Gomez-Lechon MJ (2013) An in vitro tool to assess cytochrome P450 drug biotransformation-dependent cytotoxicity in engineered HepG2 cells generated by using adenoviral vectors. Toxicol In Vitro 27:1410–1415

    Article  CAS  PubMed  Google Scholar 

  • Lertkiatmongkol P, Jenwitheesuk E, Rongnoparut P (2011) Homology modeling of mosquito cytochrome P450 enzymes involved in pyrethroid metabolism: insights into difference in substrate selectivity. BMC Res Notes 4:321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    Article  PubMed  Google Scholar 

  • Mclaughlin LA, Niazit U, Bibby J, David JP, Vontas J, Hemingway J, Ranson H, Sutcliffe MJ, Paine MJI (2008) Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2. Insect Mol Biol 17(2):125–135

    Article  CAS  PubMed  Google Scholar 

  • Nkya TE, Akhouayri I, Kisinza W, David JP (2013) Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Molec Biol 43:407–416

    Article  CAS  Google Scholar 

  • Omena MC, Navarro DM, de Paula JE, Luna JS, Ferreira de Lina MR, Sant'Ana AE (2007) Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol 98:2549–2556

    Article  PubMed  Google Scholar 

  • Pennetier C, Bouraima A, Chandre F, Piameu M, Etang J, Rossignol M, Sidick I, Zogo B, Lacroix MN, Yadav R, Pigeon O, Corbel V (2013) Efficacy of Olyset® Plus, a new long-lasting insecticidal net incorporating permethrin and piperonyl butoxide against multi-resistant malaria vectors. Plos One 8(10):1–11

    Google Scholar 

  • Pethuan S, Duangkaew P, Sarapusit S, Srisook E, Rongnoparut P (2012) Inhibition against mosquito cytochrome P450 Enzymes by Rhinacanthin-A, −B, and -C elicits synergism on cypermethrin cytotoxicity in Spodoptera frugiperda Cells. J Med Entomol 49(5):993–1000

    Article  CAS  PubMed  Google Scholar 

  • Rao YK, Yimalamma G, Rao CV, Tzeng YM (2004) Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry 65:2317–2321

    Article  CAS  PubMed  Google Scholar 

  • Rodpradit P, Boonsuepsakul S, Chareonviriyaphap T, Bangs MJ, Rongnoparut P (2005) Cytochrome P450 genes, molecular cloning and overexpression in a pyrethroid-resistant strain of Anopheles minimus mosquito. J Am Mosq Control Assoc 21(1):71–79

    Article  CAS  PubMed  Google Scholar 

  • Romanelli GP, Virla EG, Duchowicz PR, Gaddi AL, Ruiz DM, Bennardi DO, Del Valle OE, Autino JC (2010) Sustainable synthesis of flavonoid derivatives, QSAR study and insecticidal activity against the fall armyworm Spodoptera frugiperda (Lep.: Noctuidae). J Agric Food Chem 58:6290–6296

    Article  CAS  PubMed  Google Scholar 

  • Rongnoparut P, Boonsuepsakul S, Chareonviriyaphap T, Thanomsing N (2003) Cloning of cytochrome P450, CYP6P5, and CYP6AA2 from Anopheles minimus resistant to deltamethrin. J Vector Ecol 28(2):150–158

    PubMed  Google Scholar 

  • Scott JG, Foroozesh M, Hopkins NE, Alefantis TG, Alworth WL (2000) Inhibition of cytochrome P450 6D1 by alkynylarenes, methylenedioxyarenes, and other substituted aromatics. Pestic Biochem Physiol 67:63–71

    Article  CAS  Google Scholar 

  • Shaalan EAS, Canyon D, Wagdy M, Younes F, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Tanaka K, Takenaka S, Murayama N, Martin MV, Foroozesh MK, Yamazaki H, Guengerich FP, Komori M (2010) Structure–function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives. Chem Res Toxicol 23:1921–1935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siripong P, Kongkathip B, Preechanukool K, Picha P, Tunsuwan K, Taylor WC (1992) Cytotoxicity diterpenoid constituents from Andrographis paniculata Nees. leaves. J Sci Soc Thailand 18:187–194

    Article  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vijayan VA, Sathist Kumar BY, Ganesh KN, Urmila J, Fakoorzibi MR, Makkapati AK (2007) Efficacy of piperonyl butoxide (PBO) as a synergist with deltamethrin on five species of mosquitoes. J Commun Dis 39(3):159–163

    CAS  PubMed  Google Scholar 

  • Waliwitiya R, Nicholson RA, Kennedy CJ, Lowenberger CA (2012) The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae). J Med Entomol 49:614–623

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Berenbaum MR, Schuler MA (2006) Inhibition of CYP6B1-mediated detoxification of xanthotoxin by plant allelochemicals in the Black Swallowtail (Papilio polyxenes). J Chem Ecol 32:507–522

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Panida Lertkiatmongkol for providing us enzyme models and suggestions in molecular docking analysis. This work was supported by Thailand Research Fund (TRF) and Mahidol University, Royal Golden Jubilee Program (RGJ), TRF, and the Central Instrument Facility (CIF), Research Division, Faculty of Science, Mahidol University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornpimol Rongnoparut.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 636 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotewong, R., Duangkaew, P., Srisook, E. et al. Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata . Parasitol Res 113, 3381–3392 (2014). https://doi.org/10.1007/s00436-014-4003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4003-9

Keywords

Navigation