Skip to main content
Log in

Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The Culex quinquefaciatus Say, commonly known as the southern house mosquito, is well known for biting nuisance and vectoring of some fatal diseases. Synthetic chemicals have been relied upon as the major control measure to control mosquitoes. Therefore, we have evaluated 21 insecticides belonging to different chemical classes for their toxicity to C. quinquefaciatus females. Chlorfenapyr was the most toxic adulticide among all the tested insecticides. Among pyrethroids, deltamethrin was the least toxic adulticide, and all other have same toxicity. In case of organophosphates, the chlorpyrifos was the most toxic insecticide. Neonicotinoids such as acetamiprid, nitenpyram, and clothianidin have similar toxicity based on overlapping of 95 % confidence intervals (CI) and were more toxic when compared with the imidacloprid. The spinetoram was more toxic as compared with the spinosad (based on non-overlapping 95 % Cl). In case of ketoenoles, spirotetrament was more toxic as compared with the spiromesifen. Emamectin benzoate was the most toxic insecticide when compared with fipronil and indoxacarb. We also have tested four insect growth regulators (IGRS) including lufenuron, methoxyfenozide, pyriproxyfen, and cyromazine as larvicides. The lufenuron and pyriproxyfen have similar toxicity based upon their overlapping 95 % CI and were more toxic as compared with the methoxyfenozide and cyromazine. The methoxyfenozide was the moderately toxic among all the tested IGRS, and cyromazine was the least toxic among all the tested IGRS. These results will prove helpful in effectuating an effective integrated vector management program for C. quinquefaciatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas N, Shad SA, Ismail M (2015) Resistance to conventional and new insecticides in house flies (Diptera: Muscidae) from poultry facilities in Punjab, Pakistan. J Econ Entomol 108(2):826–833

    Article  PubMed  Google Scholar 

  • Ali A, Nayar J, Gu W-D (1998) Toxicity of a phenyl pyrazole insecticide, fipronil, to mosquito and chironomid midge larvae in the laboratory. J Am Mosq Control Assoc 14(2):216–218

    CAS  PubMed  Google Scholar 

  • Ali A, Nayar J, Xue R-D (1995) Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory population of Aedes albopictus. J Am Mosq Control Assoc 11(1):72–76

    CAS  PubMed  Google Scholar 

  • Ali N, Rasheed SB (2009) Determination of species composition of mosquitoes found in Palosai stream, Peshawar. Pak Entomol 31(1):47–51

    Google Scholar 

  • Saryazdi AG, Hejazi MJ, Amizadeh M (2013) Lethal and sublethal effects of spiromesifen, spirotetramat and spirodiclofen on Tetranychus urticae Koch (Acari: Tetranychidae). Arch Phytopathol Plant Prot 46(11):1278–1284

    Article  Google Scholar 

  • Bretschneider T, Benet-Buchholz J, Fischer R, Nauen R (2003) Spirodiclofen and spiromesifen—novel acaricidal and insecticidal tetronic acid derivatives with a new mode of action. CHIMIA Int J Chem 57(11):697–701

    Article  CAS  Google Scholar 

  • Campos J, Andrade CF (2003) Larval susceptibility of Aedes aegypti and Culex quinquefasciatus populations to chemical insecticides. Rev Saude Publica 37(4):523–527

    Article  PubMed  Google Scholar 

  • Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117

    Article  CAS  PubMed  Google Scholar 

  • Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R (2013) Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 6(280):1–28

    Google Scholar 

  • Davies T, Field L, Usherwood P, Williamson M (2007) A comparative study of voltage‐gated sodium channels in the Insecta: implications for pyrethroid resistance in Anopheline and other Neopteran species. Insect Mol Biol 16(3):361–375

    Article  CAS  PubMed  Google Scholar 

  • Dhang P (2011) Insecticides as urban pollutants, Urban pest management: an environmental perspective CAB international London., pp 1–18

    Google Scholar 

  • Finney D (1971) A statistical treatment of the sigmoid response curve, 3rd edn, Probit analysis. Cambridge University Press, London, p 333

    Google Scholar 

  • Godsey MS et al (2005) West Nile virus-infected mosquitoes, Louisiana, 2002. Emer Infect Dis 11(9):1399

    Article  Google Scholar 

  • Gul S, Ibrahim S, Wasif N, Zafar A, Syed R (2013) Mosquito repellents: killing mosquitoes or yourselves. J Sci Innovative Res 2(6):1052–1057

    Google Scholar 

  • Hunt D, Treacy M (1998) Pyrrole insecticides: a new class of agriculturally important insecticides functioning as uncouplers of oxidative phosphorylation insecticides with novel modes of action. Springer, p 138-151

  • Iwasa T, Motoyama N, Ambrose JT, Roe RM (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23(5):371–378

    Article  CAS  Google Scholar 

  • Jahan N, Mumtaz N (2010) Evaluation of resistance against deltamethrin in Aedes mosquitoes from Lahore, Pakistan. Biología (Pakistan) 56(1&2):9–15

    Google Scholar 

  • Jeschke P, Nauen R (2005) Neonicotinoid insecticides., pp 53–105, In L. I. Gilbert, K. Iatrou and S. S. Gill [Eds.], Comprehensive molecular insect science. Elsevier, New York

  • Jones S, Morris J, Hill G, Alderman M, Ratard R (2001) St. Louis encephalitis outbreak in Louisiana in 2001. J La State Med Soc 154(6):303–306

    Google Scholar 

  • Joseph AO, Adepeju S-OI, Omosalewa OB (2013) Distribution, abundance and diversity of mosquitoes in Akure, Ondo State, Nigeria. J Parasitol Vector Biol 5(10):132–136

    Google Scholar 

  • Khan H, Abbas N, Shad SA, Afzal MBS (2014) Genetics and realized heritability of resistance to imidacloprid in a poultry population of house fly, Musca domestica L. (Diptera: Muscidae) from Pakistan. Pestic Biochem Physiol 114:38–43

    Article  CAS  PubMed  Google Scholar 

  • Khan HAA, Akram W, Shad SA (2013) Resistance to conventional insecticides in Pakistani populations of Musca domestica L. (Diptera: Muscidae): a potential ectoparasite of dairy animals. Ecotoxicol 22(3):522–527

    Article  CAS  Google Scholar 

  • Khan HAA, Akram W, Shehzad K, Shaalan EA (2011a) First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasit Vectors 4:146

  • Khan HAA, Akram W, Shehzad K, Shaalan EA (2011b) First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasites & Vectors 4:146

  • Lasota JA, Dybas RA (1991) Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annu Rev Entomol 36(1):91–117

    Article  CAS  PubMed  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96(2):99–113

    CAS  PubMed  Google Scholar 

  • Lopez J Jr, Fritz B, Latheef M, Lan Y, Martin D, Hoffmann W (2008) Evaluation of toxicity of selected insecticides against thrips on cotton in laboratory bioassays. J Cotton Sci 12:188–194

    CAS  Google Scholar 

  • Mascarenhas R, Boethel D (1997) Responses of field-collected strains of soybean looper (Lepidoptera: Noctuidae) to selected insecticides using an artificial diet overlay bioassay. J Econ Entomol 90(5):1117–1124

    Article  CAS  Google Scholar 

  • Matsumura F (2010) Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects: a review on the status of research activities in the past, the present and the future prospects. Pestic Biochem Physiol 97(2):133–139

    Article  CAS  Google Scholar 

  • Muller G et al (2010) Control of Culex quinquefasciatus in a storm drain system in Florida using attractive toxic sugar baits. Med Vet Entomol 24(4):346–351

    Article  CAS  PubMed  Google Scholar 

  • Narahashi T, Zhao X, Ikeda T, Nagata K, Yeh J (2007) Differential actions of insecticides on target sites: basis for selective toxicity. Hum Exp Toxicol 26(4):361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauen R, Ebbinghaus-Kintscher U, Elbert A, Jeschke P, Tietjen K (2001) Acetylcholine receptors as sites for developing neonicotinoid insecticides Biochemical sites of insecticide action and resistance. Springer, p 77-105

  • Nitatpattana N, Apiwathnasorn C, Barbazan P, Leemingsawat S, Yoksan S, Gonzalez J-P (2005) First isolation of Japanese encephalitis from Culex quinquefasciatus in Thailand. Southeast Asian J Trop Med Public Health 36:875–978

    PubMed  Google Scholar 

  • Orr N, Shaffner AJ, Richey K, Crouse GD (2009) Novel mode of action of spinosad: receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pestic Biochem Physiol 95(1):1–5

    Article  CAS  Google Scholar 

  • Pampiglione S, Majori G, Petrangeli G, Romi R (1985) Avermectins, MK-933 and MK-936, for mosquito control. Trans R Soc Trop Med Hyg 79(6):797–799

    Article  CAS  PubMed  Google Scholar 

  • Pimprale SS, Besco CL, Bryson PK, Brown TM (1997) Increased susceptibility of pyrethroid-resistant tobacco budworm (Lepidoptera: Noctuidae) to chlorfenapyr. J Econ Entomol 90(1):49–54

    Article  CAS  Google Scholar 

  • Prajapati V, Tripathi A, Aggarwal K, Khanuja S (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96(16):1749–1757

    Article  CAS  PubMed  Google Scholar 

  • Pridgeon JW, Pereira RM, Becnel JJ, Allan SA, Clark GG, Linthicum KJ (2008) Susceptibility of Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action. J Med Entomol 45(1):82–87

    CAS  PubMed  Google Scholar 

  • Raghavendra K, Barik T, Bhatt R, Srivastava H, Sreehari U, Dash A (2011) Evaluation of the pyrrole insecticide chlorfenapyr for the control of Culex quinquefasciatus Say. Acta Trop 118(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Rathor HR, Nadeem G, Khan IA (2013) Pesticide susceptibility status of Anopheles mosquitoes in four flood-affected districts of South Punjab, Pakistan. Vector Borne Zoonot Dis 13(1):60–66

    Article  Google Scholar 

  • Robertson J, Preisler H (1992) Pesticide bioassays with arthropods. CRC, Boca Raton

    Google Scholar 

  • Samuel PP, Arunachalam N, Hiriyan J, Thenmozhi V, Gajanana A, Satyanarayana K (2004) Host-feeding pattern of Culex quinquefasciatus Say and Mansonia annulifera (Theobald) (Diptera: Culicidae), the major vectors of filariasis in a rural area of south India. J Med Entomol 41(3):442–446

    Article  PubMed  Google Scholar 

  • Shah RM, Abbas N, Shad SA, Sial AA (2015) Selection, resistance risk assessment, and reversion toward susceptibility of pyriproxyfen in Musca domestica L. Parasitol Res 114(2):487–494

    Article  PubMed  Google Scholar 

  • Somboon P, L-a P, Suwonkerd W (2003) Insecticide susceptibility tests of Anopheles minimus sl, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand. J Trop Med Public Health 34:87–93

    CAS  Google Scholar 

  • Su T, Webb JP, Meyer RP, Mulla MS (2003) Spatial and temporal distribution of mosquitoes in underground storm drain systems in Orange County, California. J Vector Ecol 28:79–89

    PubMed  Google Scholar 

  • Tiwary M, Naik S, Tewary DK, Mittal P, Yadav S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis 44(3):198

    CAS  PubMed  Google Scholar 

  • Tolle MA (2009) Mosquito-borne diseases. Curr Probl Pediatr Adolesc Health Care 39(4):97–140

    Article  PubMed  Google Scholar 

  • Tunaz H, Uygun N (2004) Insect growth regulators for insect pest control. Turk J Agric For 28:377–387

    CAS  Google Scholar 

  • Van Leeuwen T, Stillatus V, Tirry L (2004) Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 32(4):249–261

    Article  PubMed  Google Scholar 

  • Watson GB (2001) Actions of insecticidal spinosyns on γ-aminobutyric acid responses from small-diameter cockroach neurons. Pestic Biochem Physiol 71(1):20–28

    Article  CAS  Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides, CTD/WHO PES/IC/ 1996; 96.1: 69.

  • WHO (2010) WHO expert committee on malaria. Available from: http://rbm.who.int/docs/ecr20.

Download references

Acknowledgments

Dr. Naeem Abbas is highly acknowledged for the critical review of the MS. We also acknowledge Mr. Muhammad Hamza, Mr. Muhammad Noaman, and Zahid Iqbal for help in labor work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rizwan Mustafa Shah, Muhammad Binyamin or Sarfraz Ali Shad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R.M., Alam, M., Ahmad, D. et al. Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitol Res 115, 4345–4351 (2016). https://doi.org/10.1007/s00436-016-5218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5218-8

Keywords

Navigation