Skip to main content
Log in

Pdr5-mediated multidrug resistance requires the CPY-vacuolar sorting protein Vps3: are xenobiotic compounds routed from the vacuole to plasma membrane transporters for efflux?

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

In Saccharomyces cerevisiae several members of the ATP-binding cassette transporter superfamily efflux a broad range of xenobiotic substrates from cells. The vacuole also plays a critical role in multidrug resistance. Mutations in genes such as VPS3 that are essential for vacuolar acidification and carboxypeptidase Y vacuolar protein-sorting are multidrug sensitive. A similar phenotype is also observed with deletions of VPS15, VPS34, and VPS38, which encode essential members of the carboxypeptidase Y vacuolar protein–sorting pathway. Prior to the work described herein, detoxification by transporters and the vacuole were presumed to function independently. We demonstrate that this is not the case. Significantly, Vps3 has an epistatic relationship with Pdr5, a major yeast multidrug transporter. Thus, a double pdr5, vps3 deletion mutant is no more multidrug sensitive than its isogenic single-mutant counterparts. Subcellular fractionation experiments and analysis of purified plasma membrane vesicles indicate, however, that a vps3 mutation does not affect the membrane-localization or ATPase activity of Pdr5 even though rhodamine 6G efflux is reduced significantly. This suggests that Vps3 and probably other members of the carboxypeptidase Y vacuolar protein–sorting pathway are required for relaying xenobiotic compounds to transporters in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

cyh:

Cycloheximide

R6G:

Rhodamine 6G

FACS:

Fluorescence-activated cell sorting

CPY:

Carboxypeptidase Y

Cvt:

Cytoplasm to vacuole targeting

trityl:

Tritylimidazole

clo:

Clotrimazole

SM:

Sulfometuron methyl

MIC:

Minimum inhibitory concentration

ALP:

Alkaline phosphatase

References

  • Boeke JD, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast. Mol Gen Genet 197:345–346

    Article  PubMed  CAS  Google Scholar 

  • Brown JD (2004) Protein trafficking. In: Dickinson JR, Schweizer M (eds) The metabolism and molecular physiology of Saccharomyces cerevisiae, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Burd CG, Mustol PA, Schu PV, Emr SD (1996) A yeast protein related to mammalian Ras-binding protein is required for localization of vacuolar proteins. Mol Cell Biol 16:2369–2377

    PubMed  CAS  Google Scholar 

  • Capieaux E, Thines D, DuPont Y, Goffeau A (1993) Overexpression in E. coli and purification of an ATP-binding from the yeast plasma membrane H+-ATPase. J Biol Chem 268:21895–21900

    PubMed  CAS  Google Scholar 

  • Cui Z, Shiraki T, Hirata D, Miyakawa T (1998) Yeast gene YRR1, which is required for resistance to 4-nitroquinoline N-oxide, mediates transcriptional activation of the multidrug resistance transporter SNQ2. Mol Microbiol 29(5):1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Decottignies A, Kolaczkowski M, Balzi E, Goffeau A (1994) Solubilization and characterization of the overexpressed Pdr5 multidrug-resistance nucleotide triphosphatase of yeast. J Biol Chem 269:12797–12803

    PubMed  CAS  Google Scholar 

  • Decottignies A, Owsianik G, Ghislain M (1999) Casein kinase I-dependent phosphorylation and stability of the yeast multidrug transporter Pdr5p. J Biol Chem 274:37139–37146

    Article  PubMed  CAS  Google Scholar 

  • Gietz RD, Woods RA (1998) Transformation of yeast by the lithium acetate/single-stranded carrier DNA/PEG method. In: Brown A.J.P. Tuite M.F. (eds) Methods in microbiology vol 26: yeast gene analysis, Academic Press, San Diego

    Google Scholar 

  • Golin J, Ambudkar SV, Gottesman MM, Habib AD, Sezepanski J, Ziccardi W, May L (2003) Studies of novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux. J Biol Chem 278(8):5963–5969

    Article  PubMed  CAS  Google Scholar 

  • Golin J, Kon ZN, Wu CP, Martello J, Hanson L, Supernavage S, Ambudkar SV, Sauna ZE (2007) Complete inhibition of the Pdr5p multidrug efflux pump ATPase by its transport substrate clotrimazole suggests that GTP as well as ATP may be used as an energy source. Biochem 46(45):13109–13119

    Article  CAS  Google Scholar 

  • Hanson L, May L, Tuma P, Keeven J, Mehl P, Ferenz M, Ambudkar SV, Golin J (2005) The role of hydrogen bond acceptor groups in the interaction of substrates with Pdr5p, a major yeast drug transporter. Biochem 44(28):9703–9713

    Article  CAS  Google Scholar 

  • Hellauer K, Akache BS, MacPherson E, Sirard E, Turcotte B (2002) Zinc cluster protein Rdr1p is a transcriptional repressor of the PDR5 gene encoding a multidrug transporter. J Biol Chem 277(20):17671–17676

    Article  PubMed  CAS  Google Scholar 

  • Katzmann DP, Burnett P, Golin J, Mahe Y, Moye-Rowley WS (1994) Transcriptional control of the yeast PDR5 gene by the PDR3 gene product. Mol Cell Biol 14:4653–4661

    PubMed  CAS  Google Scholar 

  • Keeven J, Ko D, Shallom J, Uccellini B, Golin J (2002) PDR2-mediated resistance to translational inhibitors requires the UBP6 product. Curr Genet 41(1):11–19

    Article  PubMed  CAS  Google Scholar 

  • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152(3):519–530

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18

    Article  PubMed  CAS  Google Scholar 

  • Kolaczkowski M, van der Rest M, Cybularz-Kolaczkowski A, Soumillon JP, Konings WN, Goffeau A (1996) Anticancer drugs, ionic peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J Biol Chem 271:31543–31548

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Cheung KH, Ross-Macdonald P, Coelho PSR, Miller P, Snyder M (2000) TRIPLES: a database of gene function in S. cerevisiae. Nucleic Acids Res 28:81–84

    Article  PubMed  CAS  Google Scholar 

  • Meyers S, Schauer W, Balzi E, Wagner M, Goffeau A, Golin J (1992) Interaction of the yeast pleiotropic drug resistance genes-PDR1 and PDR5. Curr Genet 21:431–436

    Article  PubMed  CAS  Google Scholar 

  • Ouar Z, Bens M, Vignes C, Paulais M, Pringel C, Fleury J, Cluzeaud F, Lacave R, Vandewalle A (2003) Inhibitors of vacuolar H+ ATPase impair the preferential accumulation of daunomycin in lysosomes and reverse the resistance to anthracyclines in drug-resistant epithelial cells. Biochem J 370:185–193

    Article  PubMed  CAS  Google Scholar 

  • Parsons AB, Brost RL, Ding, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotech 22(1):62–69

    Article  CAS  Google Scholar 

  • Pelham HRB (2002) Insights from yeast endosomes. Curr Opin Cell Biol 14:454–462

    Article  PubMed  CAS  Google Scholar 

  • Pety de Thozée C, Cronin S, Goj A, Golin J, Ghislain M (2007) Subcellular trafficking of the yeast-plasma membrane ABC transporter Pdr5 is impaired by a mutation in the N-terminal nucleotide binding fold. Mol Microbiol 63:811–825

    Article  Google Scholar 

  • Piper RC, Bryant NJ, Stevens TH (1997) The membrane protein alkaline phosphatase is delivered to the vacuole by a route that is distinct from the VPS-dependent pathway. J Cell Biol 138(3):531–545

    Article  PubMed  CAS  Google Scholar 

  • Raymond CK, O’Hara PJ, Eichinger G, Rothman J, Stevens TH (1990) Molecular analysis of the yeast VPS3 gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle. J Cell Biol 111:877–892

    Article  PubMed  CAS  Google Scholar 

  • Rogers B, Decottignies A, Kolaczkowski M, Caravajal E, Moye-Rowley WS, Goffeau A (2001) The pleiotropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotech 3:207–214

    CAS  Google Scholar 

  • Rothman JH, Hyamashiro C, Raymond CK, Kane PM, Stevens TH (1989) Acidification of the lysosome-like vacuole and the vacuolar H+-ATPase are deficient in two yeast mutants that fail to sort vacuolar proteins. J Cell Biol 109:93–100

    Article  PubMed  CAS  Google Scholar 

  • Servos J, Haase E, Brendel M (1993) Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Mol Gen Genom 236(2/3):214–218

    CAS  Google Scholar 

  • Shukla S, Sani P, Jha S, Ambukar SV, Prasad R (2003) Functional characterization of Candida albicans ABC transporter Cdr1p. Eukary Cell 2:1361–1375

    Article  CAS  Google Scholar 

  • Stepp JD, Huang K, Lemmon SK (1997) The yeast adaptor protein complex, AP-3, is essential for efficient delivery of alkaline phosphatase by the alternative pathway to the vacuole. J Cell Biol 139(7):1761–1774

    Article  PubMed  CAS  Google Scholar 

  • Wach A, Brachat A, Rebischung C, Steiner S, Pokorni K, te Heesen S, Philippsen P (1998) PCR-based gene targeting in Saccharomyces cerevisiae. In: Brown AJP, Tuite MF (eds) Methods in microbiology vol 26: yeast gene analysis, Academic Press, San Diego

    Google Scholar 

  • Wurmser AE, Emr SD (2002) Novel PtdIns(3) P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J Cell Sci 158(4):761–772

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Golin.

Additional information

Communicated by S. Hohmann.

This work was supported by NIH grant GM066026 to John Golin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutledge, R.M., Ghislain, M., Mullins, J.M. et al. Pdr5-mediated multidrug resistance requires the CPY-vacuolar sorting protein Vps3: are xenobiotic compounds routed from the vacuole to plasma membrane transporters for efflux?. Mol Genet Genomics 279, 573–583 (2008). https://doi.org/10.1007/s00438-008-0334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0334-5

Keywords

Navigation