Skip to main content
Log in

Variation in estimated recombination rates across human populations

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Recently it has been reported that recombination hotspots appear to be highly variable between humans and chimpanzees, and there is evidence for between-person variability in hotspots, and evolutionary transience. To understand the nature of variation in human recombination rates, it is important to describe patterns of variability across populations. Direct measurement of recombination rates remains infeasible on a large scale, and population-genetic approaches can be imprecise, and are affected by demographic history. Reports to date have suggested broad similarity in recombination rates at large genomic scales and across human populations. Here, we examine recombination rate estimates at a finer population and genomic scale: 28 worldwide populations and 107 SNPs in a 1 Mb stretch of chromosome 22q. We employ analysis of variance of recombination rate estimates, corrected for differences in effective population size using genome-wide microsatellite mutation rate estimates. We find substantial variation in fine-scale rates between populations, but reduced variation within continental groups. All effects examined (SNP-pair, region, population and interactions) were highly significant. Adjustment for effective population size made little difference to the conclusions. Observed hotspots tended to be conserved across populations, albeit at varying intensities. This holds particularly for populations from the same region, and also to a considerable degree across geographical regions. However, some hotspots appear to be population-specific. Several results from studies on the population history of humans are in accordance with our analysis. Our results suggest that between-population variation in DNA sequences may underly recombination rate variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cann HM, de Toma C, Cazes L, Legrand MF, Morel V, Piouffre L, Bodmer J et al (2002) A human genome diversity cell line panel. Science 296:261–262

    Article  PubMed  CAS  Google Scholar 

  • Comas D, Calafell F, Mateu E, Perez-Lezaun A, Bosch E, Martinez-Arias R, Clarimon J et al (1998) Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations. Am J Hum Genet 63(6):1824–38

    Article  PubMed  CAS  Google Scholar 

  • Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, Pritchard JK (2006) A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet 38:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Crawford DC, Bhangale T, Li N, Hellenthal G, Rieder MJ, Nickerson DA, Stephens M (2004) Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat Genet 36(7):700–706

    Article  PubMed  CAS  Google Scholar 

  • Evans DM, Cardon LR (2005) A comparison of linkage disequilibrium patterns and estimated population recombination rates across multiple populations. Am J Hum Genet 76:681–687

    Article  PubMed  CAS  Google Scholar 

  • Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, New York

    Google Scholar 

  • Gonzalez-Neira A, Ke X, Lao O, Calafell F, Navarro A, Comas D, Cann H et al (2006) The portability of tag-SNP’s across populations. A worldwide survey. Genome Res 16(3):323–330

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Murray J, Neumann R (1998) High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol Cell (2):267–273

  • Jeffreys AJ, Kauppi L, Neumann R (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29(2):217–222

    Article  PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Neumann R, Panayi M, Myers S, Donnelly P (2005) Human recombination hot spots hidden in regions of strong marker association. Nat Genet 37(6):601–606

    Article  PubMed  CAS  Google Scholar 

  • Jobling MA, Hurles ME, Tyler-Smith C (2004) Human evolutionary genetics: origins, peoples & disease. Garland Science, London/New York

  • King JP, Kimmel M, Chakraborty R (2000) A power analysis of microsatellite-based statistics for inferring past population growth. Mol Biol Evol 17(12):1859–1868

    PubMed  CAS  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S et al (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    PubMed  CAS  Google Scholar 

  • Li N, Stephens M (2003) Modelling linkage disequilibrium and identyfying recombination hotspots using snp data. Genetics 165:2213–2233

    PubMed  CAS  Google Scholar 

  • May CA, Shone AC, Kalaydjieva L, Sajantila A, Jeffreys AJ (2002) Crossover clustering and rapid decay of linkage disequilibrium in the Xp/Yp pseudoautosomal gene SHOX. Nat Genet 31(3):272–275

    Article  PubMed  CAS  Google Scholar 

  • McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241

    PubMed  CAS  Google Scholar 

  • McVean GAT, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P (2004) The fine-scale structure of recombination rate variation in the human genome. Science 304:581–584

    Article  PubMed  CAS  Google Scholar 

  • Neumann R, Jeffreys AJ (2006) Polymorphism in the activity of human crossover hotspots independent of local DNA sequence variation. Hum Mol Genet 15:1401–1411

    Article  PubMed  CAS  Google Scholar 

  • Perez-Lezaun A, Calafell F, Comas D, Mateu E, Bosch E, Martinez-Arias R, Clarimon J et al (1999) Sex-specific migration patterns in Central Asian populations, revealed by analysis of Y-chromosome short tandem repeats and mtDNA. Am J Hum Genet 65(1):208–219

    Article  PubMed  CAS  Google Scholar 

  • Ptak SE, Hinds DA, Koehler K, Nickel B, Patil N, Ballinger DG, Przeworski M et al (2005) Fine-scale recombination patterns differ between chimpanzees and humans. Nat Genet 37:429–434

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg N (2006) Standardized subsets of the HGDP-CEPH human genome diversity cell line panel, accounting for atypical and duplicated samples and pairs of close relatives. Ann Hum Genet 1(6):660–671

    Google Scholar 

  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298(5602):2381–2385

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman MW (2005) Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genet 1(6):660–671

    Article  CAS  Google Scholar 

  • Serre D, Nadon R, Hudson TJ (2005) Large-scale recombination rate patterns are conserved among human populations. Genome Res 15:1547–1552

    Article  PubMed  CAS  Google Scholar 

  • Smith NGC, Fearnhead P (2005) A comparison of three estimators of the population-scaled recombination rate: accuracy and robustness. Genetics 171:2051–2062

    Article  PubMed  CAS  Google Scholar 

  • Torroni A, Sukernik RI, Schurr TG, Starikorskaya YB, Cabell MF, Crawford MH, Comuzzie AG et al (1993) MtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans. Am J Hum Genet 53(3):591–608

    PubMed  CAS  Google Scholar 

  • Winckler W, Myers SR, Richter DJ, Onofrio RC, McDonald GJ, Bontrop RE, McVean GAT et al (2005) Comparison of fine-scale recombination rates in humans and chimpanzees. Science 308(5718):107–111

    Article  PubMed  CAS  Google Scholar 

  • Zhivotovsky LA, Rosenberg NA, Feldman MW (2003) Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. Am J Hum Genet 72(5):1171–1186

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the European Project QLG2-CT-2002-00916 (LD-EUROPE), by the Ministerio de Ciencia y Tecnología from the Spanish Government (BMC2001- 0772, BFU2004-02002/BMC and SEJ2006-13537 for the first author), by DURSI, Generalitat de Catalunya (Grup de Recerca Consolidat 2005SGR00608 and Distinció per a la Recerca Universitaria to JB) and by a mobility grant from the Universitat Politècnica de Catalunya for the first author. We thank the Department of Computing from Imperial College for access to the MARS cluster for carrying out the calculations. We also thank Oscar Lao for assistance with the STR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Graffelman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graffelman, J., Balding, D.J., Gonzalez-Neira, A. et al. Variation in estimated recombination rates across human populations. Hum Genet 122, 301–310 (2007). https://doi.org/10.1007/s00439-007-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-007-0391-6

Keywords

Navigation