Skip to main content

Advertisement

Log in

Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Molybdenum cofactor (MoCo) deficiency is a rare, autosomal-recessive disorder, mainly caused by mutations in MOCS1 (MoCo deficiency type A) or MOCS2 (MoCo deficiency type B) genes; the absence of active MoCo results in a deficiency in all MoCo-dependent enzymes. Patients with MoCo deficiency present with neonatal seizures, feeding difficulties, severe developmental delay, brain atrophy and early childhood death. Although substitution therapy with cyclic pyranopterin monophosphate (cPMP) has been successfully used in both Mocs1 knockout mice and in patients with MoCo deficiency type A, there is currently no Mocs2 knockout mouse and no curative therapy for patients with MoCo deficiency type B. Therefore, we generated and characterized a Mocs2-null mouse model of MoCo deficiency type B. Expression analyses of Mocs2 revealed a ubiquitous expression pattern; however, at the cellular level, specific cells show prominent Mocs2 expression, e.g., neuronal cells in cortex, hippocampus and brainstem. Phenotypic analyses demonstrated that Mocs2 knockout mice failed to thrive and died within 11 days after birth. None of the tested MoCo-dependent enzymes were active in Mocs2-deficient mice, leading to elevated concentrations of purines, such as hypoxanthine and xanthine, and non-detectable levels of uric acid in the serum and urine. Moreover, elevated concentrations of S-sulfocysteine were measured in the serum and urine. Increased levels of xanthine resulted in bladder and kidney stone formation, whereas increased concentrations of toxic sulfite triggered neuronal apoptosis. In conclusion, Mocs2-deficient mice recapitulate the severe phenotype observed in humans and can now serve as a model for preclinical therapeutic approaches for MoCo deficiency type B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

The scheme was modified from Reiss and Hahnewald (2011)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arikyants N, Sarkissian A, Hesse A, Eggermann T, Leumann E, Steinmann B (2007) Xanthinuria type I: a rare cause of urolithiasis. Pediatr Nephrol 22:310–314. doi:10.1007/s00467-006-0267-3

    Article  PubMed  Google Scholar 

  • Atwal PS, Scaglia F (2016) Molybdenum cofactor deficiency. Mol Genet Metab 117:1–4. doi:10.1016/j.ymgme.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  • Bamforth FJ, Johnson JL, Davidson AG, Wong LT, Lockitch G, Applegarth DA (1990) Biochemical investigation of a child with molybdenum cofactor deficiency. Clin Biochem 23:537–542

    Article  CAS  PubMed  Google Scholar 

  • Belaidi AA, Roper J, Arjune S, Krizowski S, Trifunovic A, Schwarz G (2015) Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency. Biochem J 469:211–221. doi:10.1042/BJ20140768

    Article  CAS  PubMed  Google Scholar 

  • Carmi-Nawi N, Malinger G, Mandel H, Ichida K, Lerman-Sagie T, Lev D (2011) Prenatal brain disruption in molybdenum cofactor deficiency. J Child Neurol 26:460–464. doi:10.1177/0883073810383017

    Article  PubMed  Google Scholar 

  • Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712. doi:10.1016/j.devcel.2010.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couturier J, Morel M, Pontcharraud R, Gontier V, Fauconneau B, Paccalin M, Page G (2010) Interaction of double-stranded RNA-dependent protein kinase (PKR) with the death receptor signaling pathway in amyloid beta (Abeta)-treated cells and in APPSLPS1 knock-in mice. J Biol Chem 285:1272–1282. doi:10.1074/jbc.M109.041954

    Article  CAS  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758. doi:10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  • Durousset C, Gay C, Magnin S, Acquaviva C, Patural H (2016) Sulfite oxidase activity deficiency caused by cofactor molybdenum deficiency: a case of early severe encephalopathy. Arch Pediatr. doi:10.1016/j.arcped.2015.12.005

    PubMed  Google Scholar 

  • Eimer WA, Vassar R (2013) Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation. Mol Neurodegener 8:2. doi:10.1186/1750-1326-8-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endres W, Shin YS, Gunther R, Ibel H, Duran M, Wadman SK (1988) Report on a new patient with combined deficiencies of sulphite oxidase and xanthine dehydrogenase due to molybdenum cofactor deficiency. Eur J Pediatr 148:246–249

    Article  CAS  PubMed  Google Scholar 

  • Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, Sanes JR (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282:1321–1324

    Article  CAS  PubMed  Google Scholar 

  • Graf WD, Oleinik OE, Jack RM, Weiss AH, Johnson JL (1998) Ahomocysteinemia in molybdenum cofactor deficiency. Neurology 51:860–862

    Article  CAS  PubMed  Google Scholar 

  • Grings M, Moura AP, Amaral AU, Parmeggiani B, Gasparotto J, Moreira JC, Gelain DP, Wyse AT, Wajner M, Leipnitz G (2014) Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Biochim Biophys Acta 1842:1413–1422. doi:10.1016/j.bbadis.2014.04.022

    Article  CAS  PubMed  Google Scholar 

  • Hedrich H (2012) The Laboratory Mouse, 2nd edn. Elsevier Academic Press, Cambridge

    Google Scholar 

  • Ichida K, Amaya Y, Okamoto K, Nishino T (2012) Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci 13:15475–15495. doi:10.3390/ijms131115475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Jambor A, Molnar-Perl I (2009) Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride Literature overview and further study. J Chromatogr A 1216:3064–3077. doi:10.1016/j.chroma.2009.01.068

    Article  CAS  PubMed  Google Scholar 

  • Jeruc J, Vizjak A, Rozman B, Ferluga D (2006) Immunohistochemical expression of activated caspase-3 as a marker of apoptosis in glomeruli of human lupus nephritis. Am J Kidney Dis 48:410–418. doi:10.1053/j.ajkd.2006.05.019

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Coyne KE, Rajagopalan KV, Van Hove JL, Mackay M, Pitt J, Boneh A (2001) Molybdopterin synthase mutations in a mild case of molybdenum cofactor deficiency. Am J Med Genet 104:169–173. doi:10.1002/1096-8628(20011122)104:2<169:AID-AJMG1603>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  • Kocamaz E, Adiguzel E, Er B, Gundogdu G, Kucukatay V (2012) Sulfite leads to neuron loss in the hippocampus of both normal and SOX-deficient rats. Neurochem Int 61:341–346. doi:10.1016/j.neuint.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  • Kugler S, Hahnewald R, Garrido M, Reiss J (2007) Long-term rescue of a lethal inherited disease by adeno-associated virus-mediated gene transfer in a mouse model of molybdenum-cofactor deficiency. Am J Hum Genet 80:291–297. doi:10.1086/511281

    Article  CAS  PubMed  Google Scholar 

  • Landers M, Haidarliu S, Philip Zeigler H (2006) Development of rodent macrovibrissae: effects of neonatal whisker denervation and bilateral neonatal enucleation. Somatosens Mot Res 23:11–17. doi:10.1080/08990220600700784

    Article  PubMed  Google Scholar 

  • Lee HJ, Adham IM, Schwarz G, Kneussel M, Sass JO, Engel W, Reiss J (2002) Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum Mol Genet 11:3309–3317

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KC (2011) A knockout mouse resource for the biomedical research community. Ann N Y Acad Sci 1245:24–26. doi:10.1111/j.1749-6632.2011.06311.x

    Article  PubMed  Google Scholar 

  • Macaya A, Brunso L, Fernandez-Castillo N, Arranz JA, Ginjaar HB, Cuenca-Leon E, Corominas R, Roig M, Cormand B (2005) Molybdenum cofactor deficiency presenting as neonatal hyperekplexia: a clinical, biochemical and genetic study. Neuropediatrics 36:389–394. doi:10.1055/s-2005-872877

    Article  CAS  PubMed  Google Scholar 

  • Maklad A, Conway M, Hodges C, Hansen LA (2010) Development of innervation to maxillary whiskers in mice. Anat Rec (Hoboken) 293:1553–1567. doi:10.1002/ar.21194

    Article  Google Scholar 

  • Mechler K, Mountford WK, Hoffmann GF, Ries M (2015) Ultra-orphan diseases: a quantitative analysis of the natural history of molybdenum cofactor deficiency. Genet Med 17:965–970. doi:10.1038/gim.2015.12

    Article  CAS  PubMed  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    CAS  PubMed  Google Scholar 

  • Nagae A, Murakami E, Hiwada K, Sato Y, Kawachi M, Kono N (1990) Asymptomatic hereditary xanthinuria: a case report. Jpn J Med 29:287–291

    Article  CAS  PubMed  Google Scholar 

  • Nagappa M, Bindu PS, Taly AB, Sinha S, Bharath RD (2015) Child neurology: molybdenum cofactor deficiency. Neurology 85:e175–e178. doi:10.1212/WNL.0000000000002194

    Article  PubMed  Google Scholar 

  • Oda M, Satta Y, Takenaka O, Takahata N (2002) Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol 19:640–653

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo T, Matsumura K, Sakagami K, Fujii K, Tsuruya K, Noguchi H, Rovira II, Finkel T, Iida M (2009) Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension 54:868–876. doi:10.1161/HYPERTENSIONAHA.109.135152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves SA, Helman LJ, Allison A, Israel MA (1989) Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci USA 86:5178–5182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss J, Hahnewald R (2011) Molybdenum cofactor deficiency: mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 32:10–18. doi:10.1002/humu.21390

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Cohen N, Dorche C, Mandel H, Mendel RR, Stallmeyer B, Zabot MT, Dierks T (1998) Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency. Nat Genet 20:51–53. doi:10.1038/1706

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Bonin M, Schwegler H, Sass JO, Garattini E, Wagner S, Lee HJ, Engel W, Riess O, Schwarz G (2005) The pathogenesis of molybdenum cofactor deficiency, its delay by maternal clearance, and its expression pattern in microarray analysis. Mol Genet Metab 85:12–20. doi:10.1016/j.ymgme.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  • Schwahn BC, Van Spronsen FJ, Belaidi AA, Bowhay S, Christodoulou J, Derks TG, Hennermann JB, Jameson E, Konig K, McGregor TL, Font-Montgomery E, Santamaria-Araujo JA, Santra S, Vaidya M, Vierzig A, Wassmer E, Weis I, Wong FY, Veldman A, Schwarz G (2015) Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet 386:1955–1963. doi:10.1016/S0140-6736(15)00124-5

    Article  CAS  PubMed  Google Scholar 

  • Schwarz G, Santamaria-Araujo JA, Wolf S, Lee HJ, Adham IM, Grone HJ, Schwegler H, Sass JO, Otte T, Hanzelmann P, Mendel RR, Engel W, Reiss J (2004) Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli. Hum Mol Genet 13:1249–1255. doi:10.1093/hmg/ddh136

    Article  CAS  PubMed  Google Scholar 

  • Shimo T, Ashizawa N, Moto M, Iwanaga T, Nagata O (2011) Study on species differences in nephropathy induced by FYX-051, a xanthine oxidoreductase inhibitor. Arch Toxicol 85:505–512. doi:10.1007/s00204-010-0598-5

    Article  CAS  PubMed  Google Scholar 

  • Stallmeyer B, Drugeon G, Reiss J, Haenni AL, Mendel RR (1999) Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames. Am J Hum Genet 64:698–705. doi:10.1086/302295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suganuma T, Swanson SK, Florens L, Washburn MP, Workman JL (2016) Moco biosynthesis and the ATAC acetyltransferase engage translation initiation by inhibiting latent PKR activity. J Mol Cell Biol 8:44–50. doi:10.1093/jmcb/mjv070

    Article  PubMed  Google Scholar 

  • Tsikas D, Wolf A, Frolich JC (2004) Simplified HPLC method for urinary and circulating creatinine. Clin Chem 50:201–203. doi:10.1373/clinchem.2003.024141

    Article  CAS  PubMed  Google Scholar 

  • Vaughn LS, Snee B, Patel RC (2014) Inhibition of PKR protects against tunicamycin-induced apoptosis in neuroblastoma cells. Gene 536:90–96. doi:10.1016/j.gene.2013.11.074

    Article  CAS  PubMed  Google Scholar 

  • Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, Yaplito-Lee J, Wong F, Ramsden CA, Reiss J, Cook I, Fairweather J, Schwarz G (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:e1249–e1254. doi:10.1542/peds.2009-2192

    Article  PubMed  Google Scholar 

  • Wrenn JT, Wessells NK (1984) The early development of mystacial vibrissae in the mouse. J Embryol Exp Morphol 83:137–156

    CAS  PubMed  Google Scholar 

  • Xu P, LaVallee P, Hoidal JR (2000) Repressed expression of the human xanthine oxidoreductase gene. E-box and TATA-like elements restrict ground state transcriptional activity. J Biol Chem 275:5918–5926

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279:43035–43045. doi:10.1074/jbc.M402759200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our animal caretakers Stephan Wolf, Jennifer Fleming, Lea Piontek and Christina Ahlbrecht for invaluable help with animal care. This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft) (RE 768/16-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Smorag.

Ethics declarations

Compliance with ethical standards

The authors declare no conflicts of interest. This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Nds. Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Dezernat 33, Röverskamp 5, 26203 Wardenburg).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 801 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakubiczka-Smorag, J., Santamaria-Araujo, J.A., Metz, I. et al. Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients. Hum Genet 135, 813–826 (2016). https://doi.org/10.1007/s00439-016-1676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-016-1676-4

Keywords

Navigation