Skip to main content
Log in

Bootstrap confidence sets for spectral projectors of sample covariance

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Let \( X_{1},\ldots ,X_{n} \) be i.i.d. sample in \( \mathbb {R}^{p} \) with zero mean and the covariance matrix \( \varvec{\Sigma }\). The problem of recovering the projector onto an eigenspace of \( \varvec{\Sigma }\) from these observations naturally arises in many applications. Recent technique from Koltchinskii and Lounici (Ann Stat 45(1):121–157, 2017) helps to study the asymptotic distribution of the distance in the Frobenius norm \( \left\| \mathbf {P}_{r} - \widehat{\mathbf {P}}_{r} \right\| _{2} \) between the true projector \( \mathbf {P}_{r} \) on the subspace of the rth eigenvalue and its empirical counterpart \( \widehat{\mathbf {P}}_{r} \) in terms of the effective rank of \( \varvec{\Sigma }\). This paper offers a bootstrap procedure for building sharp confidence sets for the true projector \( \mathbf {P}_{r} \) from the given data. This procedure does not rely on the asymptotic distribution of \( \left\| \mathbf {P}_{r} - \widehat{\mathbf {P}}_{r} \right\| _{2} \) and its moments. It could be applied for small or moderate sample size n and large dimension p. The main result states the validity of the proposed procedure for Gaussian samples with an explicit error bound for the error of bootstrap approximation. This bound involves some new sharp results on Gaussian comparison and Gaussian anti-concentration in high-dimensional spaces. Numeric results confirm a good performance of the method in realistic examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adamczak, R., Litvak, A., Pajor, A., Tomczak-Jaegermann, N.: Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling. Constr. Approx. 34(1), 61–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bengio, I., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  3. Bentkus, V.: A Lyapunov-type bound in \(R^d\). Probab. Theory Appl. 49(2), 311–323 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chernozhukov, V., Chetverikov, D., Kato, K.: Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Stat. 41(6), 2786–2819 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chernozhukov, V., Chetverikov, D., Kato, K.: Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Probab. Theory Relat. Fields 162(1–2), 47–70 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chernozhukov, V., Chetverikov, D., Kato, K.: Central limit theorems and bootstrap in high dimensions. Ann. Probab. 45(4), 2309–2352 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, K.: A Course in Probability Theory, 3rd edn. Academic Press Inc., San Diego (2001)

    Google Scholar 

  8. Götze, F., Ulyanov, V.: Uniform approximation in the CLT for balls in Euclidean spaces. Preprint 00-0034, SFB 343, Univ. Bielefeld (2000)

  9. Götze F, Naumov A, Spokoiny V, Ulyanov V (2019) Large ball probabilities, Gaussian comparison and anti-concentration. Bernoulli 25. arXiv:1708.08663v2

  10. Holtz, M.: Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance, Lecture Notes in Computational Science and Engineering, vol. 77. Springer, Berlin (2010)

    Google Scholar 

  11. Koltchinskii, V., Lounici, K.: Concentration inequalities and moment bounds for sample covariance operators. Bernoulli 23(1), 110–133 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koltchinskii, V., Lounici, K.: Normal approximation and concentration of spectral projectors of sample covariance. Ann. Stat. 45(1), 121–157 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Hsing, T.: Deciding the dimension of effective dimension reduction space for functional and high-dimensional data. Ann. Stat. 38(5), 3028–3062 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marčenko, V., Pastur, L.: Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72(114), 507–536 (1967)

    MathSciNet  Google Scholar 

  15. Markus, A.: The eigen- and singular values of the sum and product of linear operators. Russ. Math. Surv. 19(4), 91–120 (1964)

    Article  MATH  Google Scholar 

  16. Prokhorov, Y., Ulyanov, V.: Some approximation problems in statistics and probability. In: Limit Theorems in Probability, Statistics and Number Theory, Springer Proc. Math. Stat., vol. 42, pp. 235–249. Springer, Heidelberg (2013)

  17. Rosenthal, H.: On the subspaces of \(L^{p}\) \((p>2)\) spanned by sequences of independent random variables. Isr. J. Math. 8, 273–303 (1970)

    Article  MATH  Google Scholar 

  18. Shao, J.: Mathematical Statistics. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  19. Spokoiny, V., Zhilova, M.: Bootstrap confidence sets under model misspecification. Ann. Stat. 43(6), 2653–2675 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tropp, J.: User-friendly tail bounds for sums of random matrices. Found. Comput. Math. 12(4), 389–434 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tsybakov, A.: Introduction to Nonparametric Estimation. Springer, New York (2008)

    MATH  Google Scholar 

  22. van Handel, R.: Structured random matrices. In: Convexity and Concentration, vol. 161, pp. 107–165, IMA. Springer (2017)

  23. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Eldar, Y.C., Kutyniok, G. (eds.) Compressed Sensing, pp. 210–268. Cambridge University Press, Cambridge (2012)

    Chapter  Google Scholar 

  24. Wang, X., Sloan, I.: Why are high-dimensional finance problems often of low effective dimension? SIAM J. Sci. Comput. 27(1), 159–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Associate Editor and the Reviewers for the careful reading of the manuscript and pertinent comments. Their constructive feedback helped to improve the quality of this work and shape its final form. This work has been funded by the Russian Academic Excellence Project ‘5-100’. Results of Section 5 have been obtained under support of the RSF Grant No. 18-11-00132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Naumov.

Auxiliary results

Auxiliary results

1.1 Concentration inequalities for sample covariances and spectral projectors in \(\mathbf {X}\)-world

In this section we present concentration inequalities for sample covariance matrices and spectral projectors in \(\mathbf {X}\)-world.

Theorem 6

Let \(X, X_{1}, \ldots , X_{n}\) be i.i.d. centered Gaussian random vectors in \(\mathbb {R}^{p}\) with covariance \(\varvec{\Sigma }= {{\mathrm{\mathbb {E}}}}(X X^{\mathsf {T}})\). Then

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\Vert \widehat{\varvec{\Sigma }} - \varvec{\Sigma }\Vert \lesssim \Vert \varvec{\Sigma }\Vert \left( \sqrt{\frac{\mathtt {r}(\varvec{\Sigma })}{n}} + \frac{\mathtt {r}(\varvec{\Sigma })}{n}\right) . \end{aligned}$$

Moreover, for all \(t \ge 1\) with probability \(1 - e^{-t}\)

$$\begin{aligned} \Vert \widehat{\varvec{\Sigma }} - \varvec{\Sigma }\Vert \lesssim \Vert \varvec{\Sigma }\Vert \left[ \sqrt{\frac{\mathtt {r}(\varvec{\Sigma })}{n}} \bigvee \frac{\mathtt {r}(\varvec{\Sigma })}{n} \bigvee \sqrt{\frac{t}{n}} \bigvee \frac{t}{n} \right] . \end{aligned}$$

Proof

See [11, Theorem 6, Corollary 2]. \(\square \)

To deal with spectral projectors we need the following result which was proved in [12]. Let us introduce additional notations. We denote by \(\widetilde{\varvec{\Sigma }}\) an arbitrary perturbation of \(\varvec{\Sigma }\) and \(\widetilde{\mathbf {E}}{\mathop {=}\limits ^{{\textsf {def}}}}\widetilde{\varvec{\Sigma }}- \varvec{\Sigma }\). Recall that

$$\begin{aligned} \mathbf {C}_{r} {\mathop {=}\limits ^{{\textsf {def}}}}\sum _{s \ne r} \frac{1}{\mu _{r} - \mu _{s}} \mathbf {P}_{s}. \end{aligned}$$

Lemma 4

Let \(\widetilde{\varvec{\Sigma }}\) be an arbitrary perturbation of \(\varvec{\Sigma }\) and let \( \widetilde{\mathbf {P}}_{r} \) be the corresponding projector. The following bound holds:

$$\begin{aligned} \Vert \widetilde{\mathbf {P}}_{r} - \mathbf {P}_{r}\Vert \le 4 \frac{\Vert \widetilde{\mathbf {E}}\Vert }{\overline{g}_{r}}. \end{aligned}$$

Moreover, \(\widetilde{\mathbf {P}}_{r} - \mathbf {P}_{r} = L_{r}(\widetilde{\mathbf {E}}) + S_{r}(\widetilde{\mathbf {E}})\), where \(L_{r}(\widetilde{\mathbf {E}}) {\mathop {=}\limits ^{{\textsf {def}}}}\mathbf {C}_{r} \widetilde{\mathbf {E}}\mathbf {P}_{r} + \mathbf {P}_{r} \widetilde{\mathbf {E}}\mathbf {C}_{r}\) and

$$\begin{aligned} \Vert S_{r}(\widetilde{\mathbf {E}})\Vert \le 14 \left( \frac{\Vert \widetilde{\mathbf {E}}\Vert }{\overline{g}_{r}} \right) ^{2}. \end{aligned}$$

Proof

See [12, Lemma 1]. \(\square \)

Theorem 7

(Concentration results in \(\mathbf {X}\)-world) Assume that the conditions of Theorem 1 hold. Then for all \(t: 1 \le t \le n^{1/4}\) and

$$\begin{aligned} \frac{{{\mathrm{tr}}}\varvec{\Sigma }}{\overline{g}_{r}} \left( \sqrt{\frac{t}{n}} + \sqrt{\frac{\log p}{n}} \right) \lesssim 1, \end{aligned}$$
(46)

the following bound holds with probability at least \(1 - e^{-t}\)

$$\begin{aligned} \Bigl |\Vert \widehat{\mathbf {P}}_{r} - \mathbf {P}_{r}\Vert _{2}^{2} - \Vert L_{r}(\mathbf {E})\Vert _{2}^{2} \Bigr | \lesssim m_{r} \frac{\Vert \varvec{\Sigma }\Vert ^{3} \mathtt {r}^{3}(\varvec{\Sigma })}{\overline{g}_{r}^{3}} \left( \frac{t}{n}\right) ^{3/2}. \end{aligned}$$

Proof

The proof follows from [12, Theorems 3, 5]. \(\square \)

1.2 Concentration inequalities for sums of random variables and random matrices

In what follows for a vector \(a = (a_{1}, \ldots , a_{n})\) we denote \(\Vert a\Vert _{s} {\mathop {=}\limits ^{{\textsf {def}}}}\big (\sum _{k=1}^{n} |a_{k}|^{s}\big )^{1/s}\). For a random variable X and \(r > 0\) we define the \(\psi _{r}\)-norm by

$$\begin{aligned} \Vert X\Vert _{\psi _{r}} {\mathop {=}\limits ^{{\textsf {def}}}}\inf \{ C > 0: {{\mathrm{\mathbb {E}}}}\exp (X/C)^{r} \le 2\}. \end{aligned}$$

If a random variable X is such that for any \(p \ge 1, {{\mathrm{\mathbb {E}}}}^{1/p} |X|^{p} \le p^{1/r} K\), for some \(K > 0\), then \(\Vert X\Vert _{\psi _{r}} \le c K\) where \(c > 0\) is a numerical constant.

Lemma 5

Let \(X, X_{i}, i = 1, \ldots , n\) be i.i.d. random variables with \({{\mathrm{\mathbb {E}}}}X = 0\) and \(\Vert X\Vert _{\psi _{r}} \le 1, 1 \le r \le 2\). Then there exists some absolute constant \(C>0\) such that for all \(p \ge 1\)

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\left| \sum _{k=1}^{n} a_{k } X_{k} \right| ^{p} \le (C p)^{p/2} \Vert a\Vert _{2}^{p} + (C p)^{p} \Vert a\Vert _{r_{*}}^{p}, \end{aligned}$$

where \(a = (a_{1}, \ldots , a_{n})\) and \(1/r + 1/r_{*} = 1\).

Proof

See [1, Lemma 3.6]. \(\square \)

Lemma 6

If \(0< s < 1\) and \(X_{1},\ldots , X_{n}\) are independent random variables satisfying \(\Vert X\Vert _{\psi _{s}} \le 1\), then for all \(a = (a_{1}, \ldots , a_{n}) \in \mathbb {R}^{n}\) and \(p \ge 2\)

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}\left| \sum _{k=1}^{n} a_{k} X_{k}\right| ^{p}\le & {} (C p)^{p/2} \Vert a\Vert _{2}^{p} + C_{s} p^{p/s} \Vert a\Vert _{p}^{p}. \end{aligned}$$

Moreover, for \(s \ge 1/2\), \(C_{s}\) is bounded by some absolute constant.

Proof

See [1, Lemma 3.7]. \(\square \)

Lemma 7

Let \(\eta _{1}, \ldots , \eta _{n}\) be i.i.d. standard normal random variables. For all \(t\ge 1\)

$$\begin{aligned} {{\mathrm{\mathbb {P}}}}\left( \left| \sum _{i=1}^{n} a_{i}(\eta _{i}^{4} - 3)\right| \gtrsim t^{2} \Vert a\Vert _{2} \right) \le e^{-t}. \end{aligned}$$
(47)

Moreover, if \(\overline{\eta }_{1}, \ldots , \overline{\eta }_{n}\) are i.i.d. standard normal random variables and independent of \(\eta _{1}, \ldots , \eta _{n}\) then

$$\begin{aligned} {{\mathrm{\mathbb {P}}}}\left( \left| \sum _{i=1}^{n} a_{i}(\eta _{i}^{2} \overline{\eta }_{i}^{2} - 1)\right| \gtrsim t^{2} \Vert a\Vert _{2} \right) \le e^{-t}. \end{aligned}$$
(48)

Proof

We prove (48) only. The proof of (47) is similar. Let \(\epsilon _{i}, i = 1, \ldots , n\), be i.i.d. Rademacher r.v. Denote \(\xi _{i} {\mathop {=}\limits ^{{\textsf {def}}}}\eta _{i}^{2} \overline{\eta }_{i}^{2} - 1, i = 1, \ldots , n\). Applying Lemma 6 with \(s = 1/2\) we write

$$\begin{aligned} {{\mathrm{\mathbb {E}}}}|\sum _{i=1}^{n} a_{i}\xi _{i}|^{p}\le & {} 2^{p} {{\mathrm{\mathbb {E}}}}|\sum _{i=1}^{n} a_{i} \epsilon _{i} \xi _{i}|^{p} \le C^{p} p^{p/2} \Vert a\Vert _{2}^{p} + C^{p} p^{2p} \Vert a\Vert _{p}^{p} \le C^{p} p^{2p} \Vert a\Vert _{2}^{p}. \end{aligned}$$

From Markov’s inequality

$$\begin{aligned} {{\mathrm{\mathbb {P}}}}\left( \left| \sum _{i=1}^{n} a_{i}(\eta _{i}^{2} \overline{\eta }_{i}^{2} - 1)\right| \ge t^{2} \Vert a\Vert _{2} \right)\le & {} \frac{C^{p} p^{2p}}{t^{2 p}}. \end{aligned}$$

Taking \(p = t/(Ce)^{1/2}\) we finish the proof of the lemma. \(\square \)

Lemma 8

(Matrix Gaussian series) Consider a finite sequence \(\{\mathbf {A}_{k}\}\) of fixed, self-adjoint matrices with dimension d, and let \(\{\xi _{k}\}\) be a finite sequence of independent standard normal random variables. Compute the variance parameter

$$\begin{aligned} \sigma ^{2} {\mathop {=}\limits ^{{\textsf {def}}}}\left\| \sum _{k=1}^{n} \mathbf {A}_{k}^{2} \right\| . \end{aligned}$$

Then, for all \(t \ge 0\),

$$\begin{aligned} {{\mathrm{\mathbb {P}}}}\left( \left\| \sum _{k=1}^{n} \xi _{k} \mathbf {A}_{k} \right\| \ge t\right) \le 2d \,\exp (- t^{2}/2\sigma ^{2}). \end{aligned}$$

Proof

See in [20, Theorem 4.1]. \(\square \)

Lemma 9

(Matrix Bernstein inequality) Consider a finite sequence \({\mathbf {X}_{k}}\) of independent, random, self-adjoint matrices with dimension d. Assume that \({{\mathrm{\mathbb {E}}}}\mathbf {X}_{k} = 0\) and \(\lambda _{\max }(\mathbf {X}_{k}) \le R\) almost surely. Compute the norm of the total variance,

$$\begin{aligned} \sigma ^{2} {\mathop {=}\limits ^{{\textsf {def}}}}\left\| \sum _{k=1}^{n} {{\mathrm{\mathbb {E}}}}\mathbf {X}_{k}^{2} \right\| . \end{aligned}$$

Then the following inequalities hold for all \(t \ge 0\):

$$\begin{aligned} {{\mathrm{\mathbb {P}}}}\left( \lambda _{\max }\left( \sum _{k=1}^{n} \mathbf {X}_{k} \right) \ge t\right) \le d\, \exp \left( - \frac{t^{2}/2}{\sigma ^{2} + R t/3}\right) . \end{aligned}$$

Moreover, if \({{\mathrm{\mathbb {E}}}}\mathbf {X}_{k} = 0\) and \({{\mathrm{\mathbb {E}}}}\mathbf {X}_{k}^{p} \preceq \frac{p!}{2} R^{p-2} \mathbf {A}_{k}^{2}\) then the following inequalities hold for all \(t \ge 0\):

$$\begin{aligned} {{\mathrm{\mathbb {P}}}}\left( \lambda _{\max }\left( \sum _{k=1}^{n} \mathbf {X}_{k} \right) \ge t\right) \le d \,\exp \left( - \frac{t^{2}/2}{{\tilde{\sigma }}^{2} + R t}\right) , \end{aligned}$$

where

$$\begin{aligned} {\tilde{\sigma }}^{2}&{\mathop {=}\limits ^{{\textsf {def}}}}&\Big \Vert \sum _{k=1}^{n} \mathbf {A}_{k}^{2} \Big \Vert . \end{aligned}$$

Proof

See in [20, Theorem 6.1]. \(\square \)

1.3 Auxiliary lemma

Lemma 10

Assume that \(Z_1, Z_2\) be i.i.d. and \({{\mathrm{\mathcal {N}}}}(0,1)\). Let \( \lambda _1, \lambda _2 \) be any positive numbers and \(b \ne 0\). There exists an absolute constant c such that

$$\begin{aligned} \left| \int _{-T}^{T} e^{itb} {{\mathrm{\mathbb {E}}}}\exp \bigg (it \big [\lambda _{1} Z_{1}^{2} + \lambda _{2} Z_{2}^{2}\big ]\bigg ) dt \right| \le \frac{c}{\sqrt{\lambda _{1} \lambda _{2}}}. \end{aligned}$$
(49)

Proof

Denote the l.h.s. of (49) by \(I'\). Using Euler’s formula for complex exponential function we get for positive g and any \(d \in \mathbb {R}\)

$$\begin{aligned} g + i d = \sqrt{g^{2} + d^{2}} e^{i \zeta }, \quad \zeta = \arcsin \frac{d}{\sqrt{g^{2} + d^{2}}}. \end{aligned}$$

Hence, by (34) we get

$$\begin{aligned} I' = \left| \int _{-T}^{T} \exp \bigg (i t b + \sum _{k=1}^{2} \frac{i \phi _{k} }{2}\bigg ) \prod _{k=1}^{2} \left( 1+4t^{2}\lambda ^{2}_{k}\right) ^{-1/4} \right| , \end{aligned}$$

where \(\phi _{k} {\mathop {=}\limits ^{{\textsf {def}}}}\phi _{k}(t) {\mathop {=}\limits ^{{\textsf {def}}}}\arcsin \big (2 \lambda _{k} t/(1 + 4 t^{2} \lambda _{k}^{2})^{\frac{1}{2}}\big )\). Since \(\prod _{k=1}^{2}\left( 1+4t^{2}\lambda ^{2}_{k}\right) ^{-1/4}\) is even function and \(\phi _{k}(t), k = 1,2\), is odd function of t, we may rewrite \(I'\) as follows

$$\begin{aligned} I' = \frac{2}{\sqrt{\lambda _{1} \lambda _{2}}} \left| \int _{0}^{T} \frac{1}{t} \sin \bigg (t b + \sum _{k=1}^{2} \frac{1}{2} \bigg (\phi _{k} - \frac{\pi }{2} \bigg ) \bigg ) \prod _{k=1}^{2}\left( \frac{t^{2} \lambda _{k}^{2}}{1+4t^{2}\lambda ^{2}_{k}}\right) ^{1/4} \, dt \right| . \end{aligned}$$

We note that

$$\begin{aligned} \prod _{k=1}^{2}\left( \frac{t^{2} \lambda _{k}^{2}}{1+4t^{2}\lambda ^{2}_{k}}\right) ^{1/4}\le & {} \sqrt{|t| \lambda _{2}} \end{aligned}$$

Hence, to prove (49) it is enough to show that

$$\begin{aligned} I'' {\mathop {=}\limits ^{{\textsf {def}}}}\left| \int _{1/\lambda _{2}}^{T} \frac{1}{t} \sin \bigg (t b + \sum _{k=1}^{2} \frac{1}{2} \bigg (\phi _{k} - \frac{\pi }{2} \bigg ) \bigg ) \prod _{k=1}^{2}\left( \frac{t^{2} \lambda _{k}^{2}}{1+4t^{2}\lambda ^{2}_{k}}\right) ^{1/4} \, dt \right| \le c. \end{aligned}$$

We may rewrite \(I''\) as follows

$$\begin{aligned} I'' \le I_{1}'' + \cdots + I_4'', \end{aligned}$$

where

$$\begin{aligned} I_{1}''&{\mathop {=}\limits ^{{\textsf {def}}}} \left| \int _{1/\lambda _{2}}^{T} \frac{1}{t} \sin (t b)\, dt \right| , \\ I_{2}''&{\mathop {=}\limits ^{{\textsf {def}}}} \left| \int _{1/\lambda _{2}}^{T} \frac{1}{t} \left[ \sin \bigg (t b + \sum _{k=1}^{2} \frac{1}{2} \bigg (\phi _{k} - \frac{\pi }{2} \bigg ) \bigg )- \sin (t b) \right] \, dt \right| , \\ I_{3}''&{\mathop {=}\limits ^{{\textsf {def}}}} \left| \int _{1/\lambda _{2}}^{T} \frac{1}{t} \sin \bigg (t b + \sum _{k=1}^{2} \frac{1}{2} \bigg (\phi _{k} - \frac{\pi }{2} \bigg ) \bigg ) \left[ 1 -\left( \frac{t^{2} \lambda _{1}^{2}}{1+4t^{2}\lambda ^{2}_{1}}\right) ^{1/4} \right] \, dt \right| ,\\ I_{4}''&{\mathop {=}\limits ^{{\textsf {def}}}} \left| \int _{1/\lambda _{2}}^{T} \frac{1}{t} \sin \bigg (t b + \sum _{k=1}^{2} \frac{1}{2} \bigg (\phi _{k} - \frac{\pi }{2} \bigg ) \bigg ) \right. \\&\left. \times \left[ 1 -\left( \frac{t^{2} \lambda _{2}^{2}}{1+4t^{2}\lambda ^{2}_{2}}\right) ^{1/4} \right] \left( \frac{t^{2} \lambda _{1}^{2}}{1+4t^{2}\lambda ^{2}_{1}}\right) ^{1/4} \, dt \right| . \end{aligned}$$

The bound \(I_{1}'' \le c\) is true since for any positive A and B we have

$$\begin{aligned} \left| \int _{A}^{B} \frac{\sin t}{t} \, dt \right| \le 2\int _0^\pi \frac{\sin t}{t} \, dt. \end{aligned}$$

To estimate \(I_{2}''\) we shall use the following inequalities

$$\begin{aligned}&|\sin (x+y) - \sin (x)| \le |y| \quad \text { for all } x,y \in \mathbb {R},\\&0 \le \frac{\pi }{2} - \arcsin (1-z) \le 2^{\frac{3}{2}} z^{\frac{1}{2}} \quad \text { for } 0 \le z \le 1. \end{aligned}$$

Applying these inequalities we get that

$$\begin{aligned} \left| \sin \bigg (t b + \sum _{k=1}^{2} \frac{1}{2} \bigg (\phi _{k} - \frac{\pi }{2} \bigg ) \bigg )- \sin (t b) \right| \le \frac{c'}{\lambda _{2}^{2} t^{2}}, \end{aligned}$$

where \(c'\) is some absolute constant. Hence,

$$\begin{aligned} I_3'' \le \frac{c'}{\lambda _{2}^{2}}\int _{1/\lambda _{2}}^{\infty } \frac{1}{t^3} \, dt \le c. \end{aligned}$$

The estimates for \(I_3''\) and \(I_4''\) are similar. For simplicity we estimate \(I_3''\) only. Applying the following inequality

$$\begin{aligned} 0 \le 1 - \left( \frac{t^{2} \lambda _{k}^{2}}{1+4t^{2}\lambda ^{2}_{k}}\right) ^{1/4} \le \frac{1}{4 t^{2} \lambda _{2}^{2}}, \quad k = 1, 2, \end{aligned}$$

we obtain that

$$\begin{aligned} I_3'' \le \frac{c''}{\lambda _{2}^{2}}\int _{1/\lambda _{2}}^{\infty } \frac{1}{t^3} \, dt \le c, \end{aligned}$$

where \(c''\) is some absolute constant. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, A., Spokoiny, V. & Ulyanov, V. Bootstrap confidence sets for spectral projectors of sample covariance. Probab. Theory Relat. Fields 174, 1091–1132 (2019). https://doi.org/10.1007/s00440-018-0877-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0877-2

Keywords

Mathematics Subject Classification

Navigation