Skip to main content
Log in

A generalisation of the relation between zeros of the complex Kac polynomial and eigenvalues of truncated unitary matrices

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

The zeros of the random Laurent series \(1/\mu - \sum _{j=1}^\infty c_j/z^j\), where each \(c_j\) is an independent standard complex Gaussian, is known to correspond to the scaled eigenvalues of a particular additive rank 1 perturbation of a standard complex Gaussian matrix. For the corresponding random Maclaurin series obtained by the replacement \(z \mapsto 1/z\), we show that these same zeros correspond to the scaled eigenvalues of a particular multiplicative rank 1 perturbation of a random unitary matrix. Since the correlation functions of the latter are known, by taking an appropriate limit the correlation functions for the random Maclaurin series can be determined. Only for \(|\mu | \rightarrow \infty \) is a determinantal point process obtained. For the one and two point correlations, by regarding the Maclaurin series as the limit of a random polynomial, a direct calculation can also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)

    MATH  Google Scholar 

  2. Butez, R.: The largest root of random Kac polynomials is heavy tailed. Electron. Commun. Probab. 23 (2018), paper no. 20

  3. Diaconis, P., Forrester, P.J.: Hurwitz and the origin of random matrix theory in mathematics. Random Matrix Theory Appl. 6, 1730001 (2017)

    Article  MathSciNet  Google Scholar 

  4. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  5. Forrester, P.J.: The limiting Kac random polynomial and truncated random orthogonal matrices. J. Stat. Mech. 2010, P12018 (2010)

    Article  Google Scholar 

  6. Fyodorov, Y.V.: Spectra of random matrices close to unitary and scattering theory for discrete-time systems. Disordered and complex systems. In: AIP Conference Proceedings, vol. 553, pp. 191–196. American Institute of Physics, Melville (2001)

  7. Fyodorov, Y.V., Sommers, H.-J.: Random matrices close to hermitian or unitary: overview of methods and results. J. Phys. A 36, 3303–3347 (2003)

    Article  MathSciNet  Google Scholar 

  8. Hannay, J.H.: Chaotic analytic zero points: exact statistics for those of a random spin state. J. Phys. A 29, L101–L105 (1996)

    Article  MathSciNet  Google Scholar 

  9. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  10. Ishikawa, M., Kawamuko, H., Okanda, S.: A Paffian–Hafnian analogue of Borchardt’s identity. Electron. J. Comb. 12, 9 (2005)

    MATH  Google Scholar 

  11. Kac, M.: On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49, 314 (1943)

    Article  MathSciNet  Google Scholar 

  12. Krishnapur, M.: Zeros of random analytic functions. Ann. Prob. 37, 314–346 (2009)

    Article  MathSciNet  Google Scholar 

  13. Matsumoto, S., Shirai, T.: Correlation functions for zeros of Gaussian power series and Pfaffians. Electron. J. Probab. 18 (2013), paper no. 49

  14. Peres, Y., Virag, B.: Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta. Math. 194, 1–35 (2005)

    Article  MathSciNet  Google Scholar 

  15. Poplavskyi, M., Schehr, G.: Exact persistence exponent for the \(2d\)-diffusion equation and related Kac polynomials. Phys. Rev. Lett. 121, 150601 (2018)

    Article  Google Scholar 

  16. Prosen, T.: Exact statistics of complex zeros for Gaussian random polynomials with real coefficients. J. Phys. A 29, 4417–4423 (1996)

    Article  MathSciNet  Google Scholar 

  17. Rajan, K., Abbott, L.F.: Eigenvalue spectra of random matrices for neural networks. Phys. Rev. Lett. 97, 188104 (2006)

    Article  Google Scholar 

  18. Singer, D.: A bijective proof of Borchardt’s identity. Electr. J. Comb. 11, 48 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Tao, T.: Outliers in the spectrum of iid matrices with bounded rank perturbations. Probab. Theory Relat. Fields 155, 231–263 (2013)

    Article  MathSciNet  Google Scholar 

  20. Wei, Y., Fyodorov, Y.V.: On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values. J. Phys. A 41, 502001 (2008)

    Article  MathSciNet  Google Scholar 

  21. Zyczkowski, K., Sommers, H.-J.: Truncations of random unitary matrices. J. Phys. A 33, 2045–2057 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is part of a research program supported by the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers. PJF also acknowledges partial support from the Australian Research Council Grant DP170102028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Forrester.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrester, P.J., Ipsen, J.R. A generalisation of the relation between zeros of the complex Kac polynomial and eigenvalues of truncated unitary matrices. Probab. Theory Relat. Fields 175, 833–847 (2019). https://doi.org/10.1007/s00440-019-00903-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-019-00903-7

Mathematics Subject Classification

Navigation