Skip to main content

Advertisement

Log in

Human melanomas express functional P2X7 receptors

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Adenosine 5′-triphosphate is known to function as a potent extracellular messenger, producing its effects via a distinct family of cell surface receptors. Different receptor subtypes have been shown to modulate different cellular functions such as proliferation, differentiation and apoptosis. We have investigated the functional expression and apoptotic action of the P2X7 receptor in human malignant melanoma tissue and cells. Incubation of cells with the potent P2X7 receptor agonist 2′–3′-O-(4-benzoyl-benzoyl) adenosine 5′-triphosphate leads to a decrease in cell number, which is dose-dependent and reversible by the antagonist 1-N,O-bis-[5-isoquinoline-sulfonyl]-N-methyl-L-tyrosyl)-4-phenyl-piperazine. Synthesis of the P2X7 receptor by these cells has been established by reverse transcriptase-polymerase chain reaction, immunohistochemistry, immunocytochemistry and cellular accumulation of the fluorescent DNA-binding dye YO-PRO-1. The P2X7 receptors have been shown to mediate apoptotic actions of extracellular nucleotides and represent a novel target for melanoma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    Article  CAS  PubMed  Google Scholar 

  • Abraham EH, Salikhova AY, Rapaport E (2003) ATP in the treatment of advanced cancer. In: Schwiebert EM (ed) Extracellular nucleotides and nucleosides. Elsevier Science, San Diego, pp 415–452

    Google Scholar 

  • Adrian K, Bernhard MK, Breitinger HG, Ogilvie A (2000) Expression of purinergic receptors (ionotropic P2X1–7 and metabotropic P2Y1–11) during myeloid differentiation of HL60 cells. Biochim Biophys Acta 1492:127–138

    CAS  PubMed  Google Scholar 

  • Agteresch HJ, Dagnelie PC, van der Gaast A, Stijnen T, Wilson JH (2000) Randomized clinical trial of adenosine 5′-triphosphate in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 92:321–328

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (1998) Sympathetic purinergic transmission in small blood vessels. Trends Pharmacol Sci 9:116–117

    Article  Google Scholar 

  • Burnstock G, Dumsday B, Smythe A (1972) Atropine resistant excitation of the urinary bladder: the possibility of transmission via nerves releasing a purine nucleotide. Br J Pharmacol 44:451–461

    CAS  PubMed  Google Scholar 

  • Calvert RC, Shabbir M, Thompson CS, Mikhailidis DP, Morgan RJ, Burnstock G (2004) Immunocytochemical and pharmacological characterisation of P2-purinoceptor-mediated cell growth and death in PC-3 hormone refractory prostate cancer cells. Anticancer Res 24:2853–2859

    CAS  PubMed  Google Scholar 

  • Chiozzi P, Sanz JM, Ferrari D, Falzoni S, Aleotti A, Buell GN, Collo G, Di Virgilio F (1997) Spontaneous cell fusion in macrophage cultures expressing high levels of the P2Z/P2X7 receptor. J Cell Biol 138:697–706

    Article  CAS  PubMed  Google Scholar 

  • Chueh SH, Kao LS (1993) Extracellular ATP stimulates calcium influx in neuroblastoma x glioma hybrid NG108–15 cells. J Neurochem 61:1782–1788

    CAS  PubMed  Google Scholar 

  • Coutinho-Silva R, Persechini PM, Bisaggio RD, Perfettini JL, Neto AC, Kanellopoulos JM, Motta-Ly I, Dautry-Varsat A, Ojcius DM (1999) P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am J Physiol 276:C1139–C1147

    Google Scholar 

  • Cowen DS, Berger M, Nuttle L, Dubyak GR (1991) Chronic treatment with P2-purinergic receptor agonists induces phenotypic modulation of the HL-60 and U937 human myelogenous leukemia cell lines. J Leukoc Biol 50:109–122

    CAS  PubMed  Google Scholar 

  • Dreiling L, Hoffman S, Robinson WA (1996) Melanoma: epidemiology, pathogenesis, and new modes of treatment. Adv Intern Med 41:553–604

    CAS  PubMed  Google Scholar 

  • Dubyak GR, De Young MB (1985) Intracellular Ca2+ mobilization activated by extracellular ATP in Ehrlich ascites tumor cells. J Biol Chem 260:10653–10661

    CAS  PubMed  Google Scholar 

  • Ferrari D, La Sala A, Chiozzi P, Morelli A, Falzoni S, Girolomoni G, Idzko M, Dichmann S, Norgauer J, Di Virgilio F (2000) The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J 14:2466–2476

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  • Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120:1483–1490

    Google Scholar 

  • Gartland A, Hipskind RA, Gallagher JA, Bowler WB (2001) Expression of a P2X7 receptor by a subpopulation of human osteoblasts. J Bone Miner Res 16:846–856

    CAS  PubMed  Google Scholar 

  • Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417–1423

    CAS  PubMed  Google Scholar 

  • Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer cultures. Anal Biochem 159:109–113

    Article  CAS  PubMed  Google Scholar 

  • Greig AV, Linge C, Healy V, Lim P, Clayton E, Rustin MH, McGrouther DA, Burnstock G (2003a) Expression of purinergic receptors in non-melanoma skin cancers and their functional roles in A431 cells. J Invest Dermatol 121:315–327

    Article  CAS  PubMed  Google Scholar 

  • Greig AV, Linge C, Terenghi G, McGrouther DA, Burnstock G (2003b) Purinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes. J Invest Dermatol 120:1007–1015

    Article  CAS  PubMed  Google Scholar 

  • Haskell CM, Wong M, Williams A, Lee LY (1996) Phase I trial of extracellular adenosine 5′-triphosphate in patients with advanced cancer. Med Pediatr Oncol 27:165–173

    Article  CAS  PubMed  Google Scholar 

  • Hoyle CHV, Burnstock G (1993) Postganglionic efferent transmission to the bladder and urethra. In: Maggi C (ed) The autonomic nervous system, vol 3. Nervous control of the urogenital system. Harwood Academic, Switzerland, pp 349–383

    Google Scholar 

  • Humphreys BD, Dubyak GR (1996) Induction of the P2z/P2X7 nucleotide receptor and associated phospholipase D activity by lipopolysaccharide and IFN-gamma in the human THP-1 monocytic cell line. J Immunol 157:5627–5637

    CAS  PubMed  Google Scholar 

  • Humphreys BD, Rice J, Kertesy SB, Dubyak GR (2000) Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J Biol Chem 275:26792–26798

    CAS  PubMed  Google Scholar 

  • Janssens R, Boeynaems JM (2001) Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. Br J Pharmacol 132:536–546

    Google Scholar 

  • Khakh BS, Barnard EA, Burnstock G, Kennedy C, King BF, North RA, Séguéla P, Voigt M, Humphrey PPA (2000) P2X receptor-channels. In: Girdlestone D (ed) The IUPHAR compendium of receptor characterization and classification. IUPHAR Media Ltd, London, pp 290–305

    Google Scholar 

  • King BF, Burnstock G, Boyer JL, Boeynaems J-M, Weisman GA, Kennedy C, Jacobson KA, Humphries RG, Abbracchio MP, Gachet C, Miras-Portugal MT (2000) The P2Y receptors. In: Girdlestone D (ed) The IUPHAR compendium of receptor characterization and classification. IUPHAR Media Ltd, London, pp 306–320

    Google Scholar 

  • Lin WW, Chuang DM (1993) Extracellular ATP stimulates inositol phospholipid turnover and calcium influx in C6 glioma cells. Neurochem Res 18:681–687

    Article  CAS  PubMed  Google Scholar 

  • Maaser K, Hopfner M, Kap H, Sutter AP, Barthel B, von Lampe B, Zeitz M, Scherubl H (2002) Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y(2)-receptors. Br J Cancer 86:636–644

    Google Scholar 

  • MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15:825–835

    Article  CAS  PubMed  Google Scholar 

  • Mehta VB, Hart J, Wewers MD (2001) ATP-stimulated release of interleukin (IL)-1beta and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem 276:3820–3826

    Article  CAS  PubMed  Google Scholar 

  • Merighi S, Varani K, Gessi S, Cattabriga E, Iannotta V, Ulouglu C, Leung E, Borea PA (2001) Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br J Pharmacol 134:1215–1226

    Google Scholar 

  • Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz KN, Leung E, Baraldi PG, Borea PA (2002) Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Invest Dermatol 119:923–933

    Article  CAS  PubMed  Google Scholar 

  • Nakamura E, Uezono Y, Narusawa K, Shibuya I, Oishi Y, Tanaka M, Yanagihara N, Nakamura T, Izumi F (2000) ATP activates DNA synthesis by acting on P2X receptors in human osteoblast-like MG-63 cells. Am J Physiol Cell Physiol 279:C510–C519

    Google Scholar 

  • Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    CAS  PubMed  Google Scholar 

  • Oglesby IB, Lachnit WG, Burnstock G, Ford AP (1999) Subunit specificity of polyclonal antisera to the carboxy terminal regions of P2X receptors, P2X1 through P2X7. Drug Dev Res 47:189–195

    Article  CAS  Google Scholar 

  • Osborne JE (2002) Skin cancer screening and surveillance. Br J Dermatol 146:745–754

    Google Scholar 

  • Per LK, Jon HA, Dissing S (2002) The human SH-SY5Y neuroblastoma cell-line expresses a functional P2X7 purinoceptor that modulates voltage-dependent Ca2+ channel function. J Neurochem 83:285–298

    Article  PubMed  Google Scholar 

  • Popper LD, Batra S (1993) Calcium mobilization and cell proliferation activated by extracellular ATP in human ovarian tumour cells. Cell Calcium 14:209–218

    Article  CAS  PubMed  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  • Rapaport E (1983) Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. J Cell Physiol 114:279–283

    Article  CAS  PubMed  Google Scholar 

  • Rapaport E, Fontaine J (1989) Generation of extracellular ATP in blood and its mediated inhibition of host weight loss in tumor-bearing mice. Biochem Pharmacol 38:4261–4266

    Article  CAS  PubMed  Google Scholar 

  • Ryten M, Dunn PM, Neary JT, Burnstock G (2002) ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells. J Cell Biol 158:345–355

    Article  CAS  PubMed  Google Scholar 

  • Serrone L, Hersey P (1999) The chemoresistance of human malignant melanoma: an update. Melanoma Res 9:51–58

    CAS  PubMed  Google Scholar 

  • Slater M, Scolyer RA, Gidley-Baird A, Thompson JF, Barden JA (2003) Increased expression of apoptotic markers in melanoma. Melanoma Res 13:137–145

    Article  CAS  PubMed  Google Scholar 

  • Sneddon P, Burnstock G (1984) Inhibition of excitatory junction potentials in guinea-pig vas deferens by alpha, beta-methylene-ATP: further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol 100:85–90

    Article  CAS  PubMed  Google Scholar 

  • Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    CAS  PubMed  Google Scholar 

  • Torres GE, Egan TM, Voigt MM (1999) Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem 274:6653–6659

    Article  CAS  PubMed  Google Scholar 

  • Wiley JS, Gargett CE, Zhang W, Snook MB, Jamieson GP (1998) Partial agonists and antagonists reveal a second permeability state of human lymphocyte P2Z/P2X7 channel. Am J Physiol 275:C1224–C1231

    Google Scholar 

Download references

Acknowledgements

The P2X7 receptor antibody was a gift from Roche Palo Alto (Palo Alto, Calif., USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Additional information

This work was supported by a pump-priming grant from the Royal College of Surgeons of Edinburgh, a Research Fellowship from the Royal College of Surgeons of England and a Paton/Masser research award from the British Association of Plastic Surgeons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, N., Butler, P.E.M. & Burnstock, G. Human melanomas express functional P2X7 receptors. Cell Tissue Res 321, 411–418 (2005). https://doi.org/10.1007/s00441-005-1149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-1149-x

Keywords

Navigation