Skip to main content

Advertisement

Log in

Neutrophil depletion retards endometrial repair in a mouse model

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The contribution of the high abundance of inflammatory cells present in the human endometrium prior to and during menstruation is unknown with respect to endometrial repair and/or menstruation. In this study, the presence and localisation of markers for key inflammatory cells have been examined in a mouse model of endometrial breakdown and repair and the functional contribution of neutrophils has been determined. In the model, decidualisation is artificially induced and progesterone support withdrawn; the endometrial tissue progressively breaks down by 24 h after progesterone withdrawal and, by 48 h, has usually undergone complete repair. Neutrophils have been identified in low abundance in decidual tissue, rise in number during breakdown and are most abundant during early repair. Macrophages are barely detectable during breakdown or repair in this model, whereas uterine natural killer cells are found only in intact decidua. The functional contribution of neutrophils to endometrial breakdown and repair has been assessed via neutrophil depletion by using the antibody RB6-8C5. This antibody significantly depletes neutrophils from the circulation and tissue, affects endometrial breakdown and markedly delays endometrial repair. This study has therefore demonstrated that neutrophils are the most abundant leucocyte in this model and that they play an important functional role in the processes of endometrial breakdown and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med 38:175–194

    Article  PubMed  CAS  Google Scholar 

  • Bancroft JD, Stevens A (1990) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, Capogrossi MC, Napolitano M (2003) Analysis of the role of chemokines in angiogenesis. J Immunol Methods 273:83–101

    Article  PubMed  CAS  Google Scholar 

  • Bonatz G, Hansmann ML, Buchholz F, Mettler L, Radzun HJ, Semm K (1992) Macrophage- and lymphocyte-subtypes in the endometrium during different phases of the ovarian cycle. Int J Gynaecol Obstet 37:29–36

    Article  PubMed  CAS  Google Scholar 

  • Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    PubMed  CAS  Google Scholar 

  • Brasted M, White CA, Kennedy TG, Salamonsen LA (2003) Mimicking the events of menstruation in the murine uterus. Biol Reprod 69:1273–1280

    Article  PubMed  CAS  Google Scholar 

  • Bullard KM, Longaker MT, Lorenz HP (2003) Fetal wound healing: current biology. World J Surg 27:54–61

    Article  PubMed  Google Scholar 

  • Conlan JW, North RJ (1994) Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J Exp Med 179:259–268

    Article  PubMed  CAS  Google Scholar 

  • Cox G, Crossley J, Xing Z (1995) Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am J Respir Cell Mol Biol 12:232–237

    PubMed  CAS  Google Scholar 

  • Curry TE Jr, Osteen KG (2003) The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 24:428–465

    Article  PubMed  CAS  Google Scholar 

  • Czuprynski CJ, Brown JF, Wagner RD, Steinberg H (1994) Administration of antigranulocyte monoclonal antibody RB6-8C5 prevents expression of acquired resistance to Listeria monocytogenes infection in previously immunized mice. Infect Immun 62:5161–5163

    PubMed  CAS  Google Scholar 

  • Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN, Richmond A (2000) Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol 115:234–244

    Article  PubMed  CAS  Google Scholar 

  • Dovi JV, He LK, DiPietro LA (2003) Accelerated wound closure in neutrophil-depleted mice. J Leukoc Biol 73:448–455

    Article  PubMed  CAS  Google Scholar 

  • Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327

    Article  PubMed  CAS  Google Scholar 

  • Finn CA (1986) Implantation, menstruation and inflammation. Biol Rev Camb Philos Soc 61:313–328

    PubMed  CAS  Google Scholar 

  • Finn CA (1987) Why do women and some other primates menstruate? Perspect Biol Med 30:566–574

    PubMed  CAS  Google Scholar 

  • Finn CA, Pope M (1984) Vascular and cellular changes in the decidualized endometrium of the ovariectomized mouse following cessation of hormone treatment: a possible model for menstruation. J Endocrinol 100:295–300

    PubMed  CAS  Google Scholar 

  • Heryanto B, Girling JE, Rogers PA (2004) Intravascular neutrophils partially mediate the endometrial endothelial cell proliferative response to oestrogen in ovariectomised mice. Reproduction 127:613–620

    Article  PubMed  CAS  Google Scholar 

  • Hiemstra PS, Wetering S van, Stolk J (1998) Neutrophil serine proteinases and defensins in chronic obstructive pulmonary disease: effects on pulmonary epithelium. Eur Respir J 12:1200–1208

    Article  PubMed  CAS  Google Scholar 

  • Hubner G, Brauchle M, Smola H, Madlener M, Fassler R, Werner S (1996) Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8:548–556

    Article  PubMed  CAS  Google Scholar 

  • Jones RL, Hannan NJ, Kaitu’u TJ, Zhang J, Salamonsen LA (2004) Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab 89:6155–6167

    Article  PubMed  CAS  Google Scholar 

  • Kaitu’u TJ, Shen J, Zhang J, Morison NB, Salamonsen LA (2005) Matrix metalloproteinases in endometrial breakdown and repair: functional significance in a mouse model. Biol Reprod 73:672–680

    Article  PubMed  CAS  Google Scholar 

  • Kamat BR, Isaacson PG (1987) The immunocytochemical distribution of leukocytic subpopulations in human endometrium. Am J Pathol 127:66–73

    PubMed  CAS  Google Scholar 

  • King A (2000) Uterine leukocytes and decidualization. Hum Reprod Update 6:28–36

    Article  PubMed  CAS  Google Scholar 

  • Lathbury LJ, Salamonsen LA (2000) In-vitro studies of the potential role of neutrophils in the process of menstruation. Mol Hum Reprod 6:899–906

    Article  PubMed  CAS  Google Scholar 

  • Loke YW, King A (1995) Human implantation, cell biology and immunology. Cambridge University Press, London

    Google Scholar 

  • Longaker MT, Peled ZM, Chang J, Krummel TM (2001) Fetal wound healing: progress report and future directions. Surgery 130:785–787

    Article  PubMed  CAS  Google Scholar 

  • Ludwig H, Spornitz UM (1991) Microarchitecture of the human endometrium by scanning electron microscopy: menstrual desquamation and remodeling. Ann N Y Acad Sci 622:28–46

    Article  PubMed  CAS  Google Scholar 

  • Luque EH, Montes GS (1989) Progesterone promotes a massive infiltration of the rat uterine cervix by the eosinophilic polymorphonuclear leukocytes. Anat Rec 223:257–265

    Article  PubMed  CAS  Google Scholar 

  • Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    Article  PubMed  CAS  Google Scholar 

  • Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Nakanishi I (1989) Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (“gelatinase”) by human neutrophil elastase and cathepsin G. FEBS Lett 249:353–356

    Article  PubMed  CAS  Google Scholar 

  • Olutoye OO, Zhu X, Cass DL, Smith CW (2005) Neutrophil recruitment by fetal porcine endothelial cells: implications in scarless fetal wound healing. Pediatr Res 58:1290–1294

    Article  PubMed  Google Scholar 

  • Paffaro VA Jr, Bizinotto MC, Joazeiro PP, Yamada AT (2003) Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta 24:479–488

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW, Lin EY, Zhu L (1998) Complexity in uterine macrophage responses to cytokines in mice. Biol Reprod 58:1469–1475

    Article  PubMed  CAS  Google Scholar 

  • Poropatich C, Rojas M, Silverberg SG (1987) Polymorphonuclear leukocytes in the endometrium during the normal menstrual cycle. Int J Gynecol Pathol 6:230–234

    Article  PubMed  CAS  Google Scholar 

  • Rakhmilevich AL (1995) Neutrophils are essential for resolution of primary and secondary infection with Listeria monocytogenes. J Leukoc Biol 57:827–831

    PubMed  CAS  Google Scholar 

  • Rasweiler JJ (1991) Spontaneous decidual reactions and menstruation in the black mastiff bat, Molossus ater. Am J Anat 191:1–22

    Article  PubMed  Google Scholar 

  • Rasweiler JJ, Bonilla H de (1992) Menstruation in short-tailed fruit bats (Carollia spp.). J Reprod Fertil 95:231–248

    Article  PubMed  Google Scholar 

  • Redline RW, McKay DB, Vazquez MA, Papaioannou VE, Lu CY (1990) Macrophage functions are regulated by the substratum of murine decidual stromal cells. J Clin Invest 85:1951–1958

    Article  PubMed  CAS  Google Scholar 

  • Robertson SA, Mau VJ, Young IG, Matthaei KI (2000) Uterine eosinophils and reproductive performance in interleukin 5-deficient mice. J Reprod Fertil 120:423–432

    Article  PubMed  CAS  Google Scholar 

  • Rogers HW, Unanue ER (1993) Neutrophils are involved in acute, nonspecific resistance to Listeria monocytogenes in mice. Infect Immun 61:5090–5096

    PubMed  CAS  Google Scholar 

  • Salamonsen LA (2003) Tissue injury and repair in the female human reproductive tract. Reproduction 125:301–311

    Article  PubMed  CAS  Google Scholar 

  • Salamonsen LA, Woolley DE (1996) Matrix metalloproteinases and their tissue inhibitors in endometrial remodelling and menstruation. Reprod Med Rev 5:185–203

    Article  Google Scholar 

  • Salamonsen LA, Woolley DE (1999) Menstruation: induction by matrix metalloproteinases and inflammatory cells. J Reprod Immunol 44:1–27

    Article  PubMed  CAS  Google Scholar 

  • Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  PubMed  CAS  Google Scholar 

  • Song JY, Russell P, Markham R, Manconi F, Fraser IS (1996) Effects of high dose progestogens on white cells and necrosis in human endometrium. Hum Reprod 11:1713–1718

    PubMed  CAS  Google Scholar 

  • Szpaderska AM, Zuckerman JD, DiPietro LA (2003) Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res 82:621–626

    Article  PubMed  CAS  Google Scholar 

  • Thakur ML, Li J, Chandy B, John EK, Gibbons G (1996) Transient neutropenia: neutrophil distribution and replacement. J Nucl Med 37:489–494

    PubMed  CAS  Google Scholar 

  • Tibbetts TA, Conneely OM, O’Malley BW (1999) Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod 60:1158–1165

    Article  PubMed  CAS  Google Scholar 

  • Vincent AJ, Malakooti N, Zhang J, Rogers PA, Affandi B, Salamonsen LA (1999) Endometrial breakdown in women using Norplant is associated with migratory cells expressing matrix metalloproteinase-9 (gelatinase B). Hum Reprod 14:807–815

    Article  PubMed  CAS  Google Scholar 

  • Whicher JT, Evans SW (1990) Cytokines in disease. Clin Chem 36:1269–1281

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Aidan Sudbury from the School of Mathematical Sciences, Monash University, for statistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tu’uhevaha J. Kaitu’u-Lino.

Additional information

This work was funded by the National Health and Medical Research Council of Australia (#143798, #241000) and by an Australian Postgraduate Scholarship to T.K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaitu’u-Lino, T.J., Morison, N.B. & Salamonsen, L.A. Neutrophil depletion retards endometrial repair in a mouse model. Cell Tissue Res 328, 197–206 (2007). https://doi.org/10.1007/s00441-006-0358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0358-2

Keywords

Navigation