Skip to main content
Log in

Developmental profile of erythropoietin and its receptor in guinea-pig retina

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Evidence suggests that endogenous erythropoietin (EPO) is involved in the development of the central nervous system; however, its role in retinal development is yet to be determined. In this study, we have used fluorescence immunohistochemistry to localise EPO and its receptor (EPOR) in the developing and mature retina of the guinea-pig, a species in which retinal development is similar to that in humans. EPO immunoreactivity (IR) was observed in ganglion cells from 25 days of gestation (dg; term ∼67 dg), and in the inner and outer plexiform layers and in horizontal cells by 40 dg. EPO-IR persisted in all of these structures into adulthood. Müller cells also displayed EPO-IR, which was seen in the radial processes and endfeet at 40 dg and in the cytoplasm by 50 dg. IR in these cells was particularly intense and appeared to increase with age. EPOR-IR was found in all ages examined; it was detected in ganglion cells at 25 dg and, from 30 dg onwards, was localised on, and adjacent to, the cell surface membrane. The distribution of EPOR-IR became increasingly widespread during gestation and, by 50 dg, EPOR-IR was detectable on the majority of retinal somal membranes. This localisation persisted in the postnatal and adult retina. Therefore, IR for EPO and its receptor is present in the guinea-pig retina from as early as 25 dg, when retinal layers are forming, and persists throughout postnatal development. This suggests that EPO plays a role both in retinal development and in the maintenance of the adult retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CNS:

central nervous system

dg:

days of gestation

EPO:

erythropoietin

EPOR:

erythropoietin receptor

GCL:

ganglion cell layer

GS:

glutamine synthetase

ILM:

inner limiting membrane

INL:

inner nuclear layer

IPL:

inner plexiform layer

IR:

immunoreactivity

NFL:

nerve fibre layer

OLM:

outer limiting membrane

ONL:

outer nuclear layer

OPL:

outer plexiform layer

P:

postnatal day

PB:

phosphate buffer

PBS:

phosphate-buffered saline

PRL:

photoreceptor layer

TBS-T:

TRIS-buffered saline with Triton X-100

References

  • Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    Article  PubMed  CAS  Google Scholar 

  • Bernaudin M, Bellail A, Marti HH, Yvon A, Vivien D, Duchatelle I, Mackenzie ET, Petit E (2000) Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30:271–278

    Article  PubMed  CAS  Google Scholar 

  • Bocker-Meffert S, Rosenstiel P, Rohl C, Warneke N, Held-Feindt J, Sievers J, Lucius R (2002) Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 43:2021–2026

    PubMed  Google Scholar 

  • Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 97:10526–10531

    Article  PubMed  CAS  Google Scholar 

  • Caye-Thomasen P, Wagner N, Lidegaard Frederiksen B, Asal K, Thomsen J (2005) Erythropoietin and erythropoietin receptor expression in the guinea pig inner ear. Hear Res 203:21–27

    Article  PubMed  CAS  Google Scholar 

  • Digicaylioglu M, Bichet S, Marti HH, Wenger RH, Rivas LA, Bauer C, Gassmann M (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA 92:3717–3720

    Article  PubMed  CAS  Google Scholar 

  • Eckardt KU, Kurtz A (2005) Regulation of erythropoietin production. Eur J Clin Invest 35 (Suppl 3):13–19

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ramirez M, Hernandez C, Simo R (2008) Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and nondiabetic subjects. Diabetes Care 31:1189–1194

    Article  PubMed  Google Scholar 

  • Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, Bauer C, Gassmann M, Reme CE (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8:718–724

    Article  PubMed  CAS  Google Scholar 

  • Grimm C, Wenzel A, Stanescu D, Samardzija M, Hotop S, Groszer M, Naash M, Gassmann M, Reme C (2004) Constitutive overexpression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 24:5651–5658

    Article  PubMed  CAS  Google Scholar 

  • Junk AK, Mammis A, Savitz SI, Singh M, Roth S, Malhotra S, Rosenbaum PS, Cerami A, Brines M, Rosenbaum DM (2002) Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci USA 99:10659–10664

    Article  PubMed  CAS  Google Scholar 

  • Juul SE, Anderson DK, Li Y, Christensen RD (1998) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43:40–49

    Article  PubMed  CAS  Google Scholar 

  • Knabe W, Knerlich F, Washausen S, Kietzmann T, Siren AL, Brunnett G, Kuhn HJ, Ehrenreich H (2004) Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat Embryol (Berl) 207:503–512

    Article  CAS  Google Scholar 

  • Loeliger M, Briscoe T, Lambert G, Caddy J, Rehn A, Dieni S, Rees S (2004) Chronic placental insufficiency affects retinal development in the guinea pig. Invest Ophthalmol Vis Sci 45:2361–2367

    Article  PubMed  Google Scholar 

  • Loeliger M, Duncan J, Louey S, Cock M, Harding R, Rees S (2005) Fetal growth restriction induced by chronic placental insufficiency has long-term effects on the retina but not the optic nerve. Invest Ophthalmol Vis Sci 46:3300–3308

    Article  PubMed  Google Scholar 

  • Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y, Bauer C, Gassmann M (1996) Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8:666–676

    Article  PubMed  CAS  Google Scholar 

  • Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M, Sasaki R (1994) A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem 269:19488–19493

    PubMed  CAS  Google Scholar 

  • Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Rowe MJ, Winters SA, Ohls RK (2008) Elevated erythropoietin mRNA and protein concentrations in the developing human eye. Pediatr Res 63:394–397

    Article  PubMed  CAS  Google Scholar 

  • Pillai A, Mahadik SP (2006) Differential effects of haloperidol and olanzapine on the expression of erythropoietin and its receptor in rat hippocampus and striatum. J Neurochem 98:1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Rees S, Bainbridge A (1992) The structural and neurochemical development of the fetal guinea pig retina and optic nerve in experimental growth retardation. Int J Dev Neurosci 10:93–108

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer J (1988) Astrocytes in the guinea pig, horse, and monkey retina: their occurrence coincides with the presence of blood vessels. Glia 1:74–89

    Article  PubMed  CAS  Google Scholar 

  • Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743

    PubMed  CAS  Google Scholar 

  • Siren AL, Knerlich F, Poser W, Gleiter CH, Bruck W, Ehrenreich H (2001) Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 101:271–276

    PubMed  CAS  Google Scholar 

  • Spira AW (1975) In utero development and maturation of the retina of a non-primate mammal: a light and electron microscopic study of the guinea pig. Anat Embryol (Berl) 146:279–300

    Article  CAS  Google Scholar 

  • Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, Liu X, Wu H, Carmichael ST (2006) A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 26:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Weishaupt JH, Rohde G, Polking E, Siren AL, Ehrenreich H, Bahr M (2004) Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 45:1514–1522

    Article  PubMed  Google Scholar 

  • Yamaji R, Okada T, Moriya M, Naito M, Tsuruo T, Miyatake K, Nakano Y (1996) Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA. Eur J Biochem 239:494–500

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki M, Mishima HK, Yamashita H, Kashiwagi K, Murata K, Minamoto A, Inaba T (2005) Neuroprotective effects of erythropoietin on glutamate and nitric oxide toxicity in primary cultured retinal ganglion cells. Brain Res 1050:15–26

    Article  PubMed  CAS  Google Scholar 

  • Yasuda Y, Nagao M, Okano M, Masuda S, Sasaki R, Konishi H, Tamnimura T (1993) Localization of erythropoietin and erythropoietin-receptor in postimplantation mouse embryos. Dev Growth Differ 35:711–722

    Article  CAS  Google Scholar 

  • Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 20:175–208

    Article  PubMed  CAS  Google Scholar 

  • Yu DY, Cringle SJ, Alder VA, Su EN, Yu PK (1996) Intraretinal oxygen distribution and choroidal regulation in the avascular retina of guinea pigs. Am J Physiol 270:H965–H973

    PubMed  CAS  Google Scholar 

  • Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC, Costantini F, Noguchi CT (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516

    PubMed  CAS  Google Scholar 

  • Zhu B, Wang W, Gu Q, Xu X (2008) Erythropoietin protects retinal neurons and glial cells in early-stage streptozotocin-induced diabetic rats. Exp Eye Res 86:375–382

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Mark Ransome for his assistance with the EPOR immunoprecipitation assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Tolcos.

Additional information

This study was funded by the ANZ Charitable Trust; Medical Research and Technology in Victoria (M. Tolcos) and the National Health and Medical Research Council of Australia (M. Tolcos).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munro, K., Rees, S., O’Dowd, R. et al. Developmental profile of erythropoietin and its receptor in guinea-pig retina. Cell Tissue Res 336, 21–29 (2009). https://doi.org/10.1007/s00441-009-0754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0754-5

Keywords

Navigation