Skip to main content
Log in

Hyperpolarization-activated cyclic-nucleotide gated 4 (HCN4) protein is expressed in a subset of rat dorsal root and trigeminal ganglion neurons

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels are active at resting membrane potential and thus are likely to contribute to neuronal excitability. Four HCN channel subunits (HCN1–4) have previously been cloned. The aim of the current study was to investigate the immunoreactivity of HCN4 channel protein in rat trigeminal (TG) and dorsal root ganglion (DRG) sensory neurons. HCN4 was present in 9% of TG neurons and 4.7% of DRG neurons, it was distributed in a discrete population of small-diameter neurons in the TG but was located in cells of all sizes in the DRG. Approximately two thirds of HCN4-containing neurons in each ganglia were labelled with antisera raised against the 200-kDa neurofilament (NF200). The remaining HCN4-containing neurons were NF200-negative, were not labelled with antisera raised against calcitonin-gene related peptide (CGRP), and did not bind the isolectin B4 (IB4). HCN4-containing neurons made up more than half of the population of small-diameter primary afferent neurons that did not contain either NF200 or CGRP or bind IB4 in both TG and DRG. This population was not insignificant, comprising 5% of TG neurons and 2% of DRG neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ambalavanar R, Morris R (1992) The distribution of binding by isolectin I-B4 from Griffonia simplicifolia in the trigeminal ganglion and brainstem trigeminal nuclei in the rat. Neuroscience 47:421–429

    Article  PubMed  CAS  Google Scholar 

  • Antal M, Papp I, Bahaerguli N, Veress G, Vereb G (2004) Expression of hyperpolarization-activated and cyclic nucleotide-gated cation channel subunit 2 in axon terminals of peptidergic nociceptive primary sensory neurons in the superficial spinal dorsal horn of rats. Eur J Neurosci 19:1336–1342

    Article  PubMed  Google Scholar 

  • Bergman E, Carlsson K, Liljeborg A, Manders E, Hökfelt T, Ulfhake B (1999) Neuropeptides, nitric oxide synthase and GAP-43 in B4-binding and RT97 immunoreactive primary sensory neurons: normal distribution pattern and changes after peripheral nerve transection and aging. Brain Res 832:63–83

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Guo H-Q, Lee DH, Luo L, Liu C, Kuei C, Velumian AA, Butler MP, Brown SM, Dubin AE (2003) Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J Neurosci 23:1169–1178

    PubMed  CAS  Google Scholar 

  • Cho HJ, Staikopoulos V, Furness JB, Jennings EA (2009) Inflammation-induced increase in hyperpolarization-activated, cyclic nucleotide-gated channel protein in trigeminal ganglion neurons and the effect of buprenorphine. Neuroscience 162:453–461

    Article  PubMed  CAS  Google Scholar 

  • Darian-Smith I (1966) Neural mechanisms of facial sensation. Int Rev Neurobiol 9:301–395

    Article  PubMed  CAS  Google Scholar 

  • Doan TN, Stephans K, Ramirez AN, Glazebrook PA, Andresen MC, Kunze DL (2004) Differential distribution and function of hyperpolarization-activated channels in sensory neurons and mechanosensitive fibers. J Neurosci 24:3335–3343

    Article  PubMed  CAS  Google Scholar 

  • Fang X, Djouhri L, McMullan S, Berry C, Waxman SG, Okuse K, Lawson SN (2006) Intense isolectin-B-4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J Neurosci 26:7281–7292

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka T, Kobayashi K, Yamanaka H, Obata K, Dai Y, Noguchi K (2008) Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons. J Comp Neurol 510:188–206

    Article  PubMed  CAS  Google Scholar 

  • Hwang SJ, Oh JM, Valtschanoff JG (2005) The majority of bladder sensory afferents to the rat lumbosacral spinal cord are both IB4- and CGRP-positive. Brain Res 1062:86–91

    Article  PubMed  CAS  Google Scholar 

  • Ingram SL, Williams JT (1996) Modulation of the hyperpolarization-activated current (Ih) by cyclic nucleotides in guinea-pig primary afferent neurons. J Physiol (Lond) 492:97–106

    CAS  Google Scholar 

  • Kashiba H, Uchida Y, Senba E (2001) Difference in binding by isolectin B4 to trkA and c-ret mRNA-expressing neurons in rat sensory ganglia. Brain Res Mol Brain Res 95:18–26

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa J, Takeda M, Suzuki I, Kadoi J, Tsuboi Y, Honda K, Matsumoto S, Nakagawa H, Tanabe A, Iwata K (2006) Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy. Eur J Neurosci 24:1976–1986

    Article  PubMed  Google Scholar 

  • Kouranova EV, Strassle BW, Ring RH, Bowlby MR, Vasilyev DV (2008) Hyperpolarization-activated cyclic nucleotide-gated channel mRNA and protein expression in large versus small diameter dorsal root ganglion neurons: correlation with hyperpolarization-activated current gating. Neuroscience 153:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol (Lond) 435:41–63

    CAS  Google Scholar 

  • Lawson SN, Harper AA, Harper EI, Garson JA, Anderton BH (1984) A monoclonal antibody against neurofilament protein specifically labels a subpopulation of rat sensory neurones. J Comp Neurol 228:263–272

    Article  PubMed  CAS  Google Scholar 

  • Lawson SN, McCarthy PW, Prabhakar E (1996) Electrophysiological properties of neurones with CGRP-like immunoreactivity in rat dorsal root ganglia. J Comp Neurol 365:355–366

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Chang L, Sorkin LS, Chaplan SR (2005) Hyperpolarization-activated, cation-nonselective, cyclic nucleotide-modulated channel blockade alleviates mechanical allodynia and suppresses ectopic discharge in spinal nerve ligated rats. J Pain 6:417–424

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Chang L, Brown SM, Ao H, Lee DH, Higuera ES, Dubin AE, Chaplan SR (2007) Role of peripheral hyperpolarization-activated cyclic nucleotide-modulated channel pacemaker channels in acute and chronic pain models in the rat. Neuroscience 144:1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Matsuyoshi H, Masuda N, Chancellor MB, Erickson VL, Hirao Y, Groat WC de, Wanaka A, Yoshimura N (2006) Expression of hyperpolarization-activated cyclic nucleotide-gated cation channels in rat dorsal root ganglion neurons innervating urinary bladder. Brain Res 1119:115–123

    Article  PubMed  CAS  Google Scholar 

  • Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268:1646–1652

    Article  PubMed  CAS  Google Scholar 

  • Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and vesicular transport of glutamate. J Comp Neurol 483:1–16

    Article  PubMed  CAS  Google Scholar 

  • Much B, Wahl-Schott C, Zong X, Schneider A, Baumann L, Moosmang S, Ludwig A, Biel M (2003) Role of subunit heteromerization and n-linked glycosylation in the formation of functional hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem 278:43781–43786

    Article  PubMed  CAS  Google Scholar 

  • Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Szucs P, Hollo K, Erdelyi F, Szabo G, Antal M (2006) Hyperpolarization-activated and cyclic nucleotide-gated cation channel subunit 2 ion channels modulate synaptic transmission from nociceptive primary afferents containing substance P to secondary sensory neurons in laminae I-IIo of the rodent spinal dorsal horn. Eur J Neurosci 24:1341–1352

    Article  PubMed  Google Scholar 

  • Price TJ, Flores CM (2007) Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B-4 binding in primary afferent neurons of the rat and mouse. J Pain 8:263–272

    Article  PubMed  CAS  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  PubMed  CAS  Google Scholar 

  • Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717–729

    Article  PubMed  CAS  Google Scholar 

  • Staikopoulos V, Sessle BJ, Furness JB, Jennings EA (2007) Localization of P2X2 and P2X3 receptors in rat trigeminal ganglion neurons. Neuroscience 144:208–216

    Article  PubMed  CAS  Google Scholar 

  • Stieber J, Stockl G, Herrmann S, Hassfurth B, Hofmann F (2005) Functional expression of the human HCN3 channel. J Biol Chem 280:34635–34643

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi Y, Takeda M, Tanimoto T, Ikeda M, Matsumoto S, Kitagawa J, Teramoto K, Simizu K, Yamazaki Y, Shima A, Ren K, Iwata K (2004) Alteration of the second branch of the trigeminal nerve activity following inferior alveolar nerve transection in rats. Pain 111:323–334

    Article  PubMed  Google Scholar 

  • Tu H, Deng L, Sun Q, Yao L, Han J-S, Wan Y (2004) Hyperpolarization-activated, cyclic nucleotide-gated cation channels: roles in the differential electrophysiological properties of rat primary afferent neurons. J Neurosci Res 76:713–722

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Rivero-Melián C, Robertson B, Grant G (1994) Transganglionic transport and binding of the isolectin B4 from Griffonia simplicifolia I in rat primary sensory neurons. Neuroscience 62:539–551

    Article  PubMed  CAS  Google Scholar 

  • Wells JE, Rowland KC, Proctor EK (2007) Hyperpolarization-activated channels in trigeminal ganglia innervating healthy and pulp-exposed teeth. Int Endod J 40:715–721

    Article  PubMed  CAS  Google Scholar 

  • Willis WD Jr, Coggeshall RE (2004) Sensory mechanisms of the spinal cord. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Yao H, Donnelly DF, Ma C, LaMotte RH (2003) Upregulation of the hyperpolarization-activated cation current after chronic compression of the dorsal root ganglion. J Neurosci 23:2069–2074

    PubMed  CAS  Google Scholar 

  • Yasuhara O, Aimi Y, Matsuo A, Kimura H (2008) Distribution of a splice variant of choline acetyltransferase in the trigeminal ganglion and brainstem of the rat: comparison with calcitonin gene-related peptide and substance P. J Comp Neurol 509:436–448

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Profs. Colin Anderson and Barry Sessle for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest A. Jennings.

Additional information

This work was supported by the National Health & Medical Research Council (Australia; grant no. 454606).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Hj., Staikopoulos, V., Ivanusic, J.J. et al. Hyperpolarization-activated cyclic-nucleotide gated 4 (HCN4) protein is expressed in a subset of rat dorsal root and trigeminal ganglion neurons. Cell Tissue Res 338, 171–177 (2009). https://doi.org/10.1007/s00441-009-0869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0869-8

Keywords

Navigation