Skip to main content
Log in

From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a “sympathoadrenal cell”, as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Muller T, Fritz N, Beljajeva A, Mochii M, Liste I, Usoskin D, Suter U, Birchmeier C, Ernfors P (2009) Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139:366–379

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AM (2017) Immunohistochemical study of sustentacular cells in adrenal medulla of neonatal and adult rats using an antibody against S-100 protein. Folia Morphol (Warsz) 76:246–251

    Article  CAS  Google Scholar 

  • Ahonen M, Soinila S, Joh TH (1987) Pre- and postnatal development of rat retroperitoneal paraganglia. J Auton Nerv Syst 18:111–120

    Article  CAS  PubMed  Google Scholar 

  • Ajioka I, Martins RA, Bayazitov IT, Donovan S, Johnson DA, Frase S, Cicero SA, Boyd K, Zakharenko SS, Dyer MA (2007) Differentiated horizontal interneurons clonally expand to form metastatic retinoblastoma in mice. Cell 131:378–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam G, Cui H, Shi H, Yang L, Ding J, Mao L, Maltese WA, Ding HF (2009) MYCN promotes the expansion of Phox2B-positive neuronal progenitors to drive neuroblastoma development. Am J Pathol 175:856–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allmendinger A, Stoeckel E, Saarma M, Unsicker K, Huber K (2003) Development of adrenal chromaffin cells is largely normal in mice lacking the receptor tyrosine kinase c-ret. Mech Dev 120:299–304

    Article  CAS  PubMed  Google Scholar 

  • Anderson DJ, Axel R (1985) Molecular probes for the development and plasticity of neural crest derivatives. Cell 42:649–662

    Article  CAS  PubMed  Google Scholar 

  • Anderson DJ, Axel R (1986) A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids. Cell 47:1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Anderson DJ, Carnahan JF, Michelsohn A, Patterson PH (1991) Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci 11:3507–3519

    Article  CAS  PubMed  Google Scholar 

  • Andres R, Forgie A, Wyatt S, Chen Q, de Sauvage FJ, Davies AM (2001) Multiple effects of artemin on sympathetic neurone generation, survival and growth. Development 128:3685–3695

    CAS  PubMed  Google Scholar 

  • Apostolova G, Dechant G (2009) Development of neurotransmitter phenotypes in sympathetic neurons. Auton Neurosci 151:30–38

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Pulvers JN, Haffner C, Schilling B, Nusslein I, Calegari F, Huttner WB (2011) Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat Commun 2:154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armstrong A, Ryu YK, Chieco D, Kuruvilla R (2011) Frizzled3 Is required for neurogenesis and target innervation during sympathetic nervous system development. J Neurosci 31:2371–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baggiolini A, Varum S, Mateos JM, Bettosini D, John N, Bonalli M, Ziegler U, Dimou L, Clevers H, Furrer R, Sommer L (2015) Premigratory and migratory neural crest cells are multipotent in vivo. Cell Stem Cell 16:314–322

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH, Enomoto H, Johnson EM Jr, Milbrandt J (2000) The GDNF family ligands and receptors - implications for neural development. Curr Opin Neurobiol 10:103–110

    Article  CAS  PubMed  Google Scholar 

  • Baroffio A, Dupin E, Le Douarin NM (1988) Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci U S A 85:5325–5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchmeier C, Nave KA (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56:1491–1497

    Article  PubMed  Google Scholar 

  • Blomen VA, Boonstra J (2007) Cell fate determination during G1 phase progression. Cell Mol Life Sci 64:3084–3104

    Article  CAS  PubMed  Google Scholar 

  • Bocian-Sobkowska J, Wozniak W, Malendowicz LK, Ginda W (1996) Stereology of human fetal adrenal medulla. Histol Histopathol 11:389–393

    CAS  PubMed  Google Scholar 

  • Bodmer D, Levine-Wilkinson S, Richmond A, Hirsh S, Kuruvilla R (2009) Wnt5a Mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. J Neurosci 29:7569–7581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britsch S, Li L, Kirchhoff S, Theuring F, Brinkmann V, Birchmeier C, Riethmacher D (1998) The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12:1825–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronner-Fraser M (1986) Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol 115:44–55

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser M, Fraser SE (1988) Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335:161–164

    Article  CAS  PubMed  Google Scholar 

  • Bronner-Fraser M, Fraser S (1989) Developmental potential of avian trunk neural crest cells in situ. Neuron 3:755–766

    Article  CAS  PubMed  Google Scholar 

  • Brunet I, Gordon E, Han J, Cristofaro B, Broqueres-You D, Liu C, Bouvree K, Zhang J, del Toro R, Mathivet T, Larrivee B, Jagu J, Pibouin-Fragner L, Pardanaud L, Machado MJ, Kennedy TE, Zhuang Z, Simons M, Levy BI, Tessier-Lavigne M, Grenz A, Eltzschig H, Eichmann A (2014) Netrin-1 controls sympathetic arterial innervation. J Clin Invest 124:3230–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchmann-Moller S, Miescher I, John N, Krishnan J, Deng CX, Sommer L (2009) Multiple lineage-specific roles of Smad4 during neural crest development. Dev Biol 330:329–338

    Article  PubMed  CAS  Google Scholar 

  • Burstyn-Cohen T, Kalcheim C (2002) Association between the cell cycle and neural crest delamination through specific regulation of G1/S transition. Dev Cell 3:383–395

    Article  CAS  PubMed  Google Scholar 

  • Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 Is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calder A, Roth-Albin I, Bhatia S, Pilquil C, Lee JH, Bhatia M, Levadoux-Martin M, McNicol J, Russell J, Collins T, Draper JS (2013) Lengthened G1 phase indicates differentiation status in human embryonic stem cells. Stem Cells Dev 22:279–295

    Article  CAS  PubMed  Google Scholar 

  • Callahan T, Young HM, Anderson RB, Enomoto H, Anderson CR (2008) Development of satellite glia in mouse sympathetic ganglia: GDNF and GFR alpha 1 are not essential. Glia 56:1428–1437

    Article  PubMed  Google Scholar 

  • Cameron-Curry P, Dulac C, Le Douarin NM (1993) Negative regulation of Schwann cell myelin protein gene expression by the dorsal root ganglionic microenvironment. Eur J Neurosci 5:594–604

    Article  CAS  PubMed  Google Scholar 

  • Cane KN, Anderson CR (2009) Generating diversity: mechanisms regulating the differentiation of autonomic neuron phenotypes. Auton Neurosci 151:17–29

    Article  CAS  PubMed  Google Scholar 

  • Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, Johnston C, Drechsel D, Lebel-Potter M, Garcia LG, Hunt C, Dolle D, Bithell A, Ettwiller L, Buckley N, Guillemot F (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25:930–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan WH, Gonsalvez DG, Young HM, Southard-Smith EM, Cane KN, Anderson CR (2016a) Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells. Dev Neurobiol 76:137–149

    Article  CAS  PubMed  Google Scholar 

  • Chan WH, Stamp LA, Hirst CS, McKeown SJ, Anderson CR, Young HM (2016b) Development of the autonomic nervous system. Rev Cell Biol Mol Med. https://doi.org/10.1002/3527600906.mcb.201600018

  • Cheung M, Chaboissier MC, Mynett A, Hirst E, Schedl A, Briscoe J (2005) The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8:179–192

    Article  CAS  PubMed  Google Scholar 

  • Chubb DP, Anderson CR (2010) The relationship of the birth date of rat sympathetic neurons to the target they innervate. Dev Dyn 239:897–904

    Article  CAS  PubMed  Google Scholar 

  • Coppola E, Pattyn A, Guthrie SC, Goridis C, Studer M (2005) Reciprocal gene replacements reveal unique functions for Phox2 genes during neural differentiation. EMBO J 24:4392–4403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppola E, d’Autreaux F, Rijli FM, Brunet JF (2010) Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development 137:4211–4220

    Article  CAS  PubMed  Google Scholar 

  • Corpening JC, Cantrell VA, Deal KK, Southard-Smith EM (2008) A Histone 2BCerulean BAC transgene identifies differential expression of Phox2b in migrating enteric neural crest derivatives and enteric glia. Dev Dyn 237:1119–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coupland RE (1954) Post-natal fate of the abdominal para-aortic bodies in man. J Anat 88:455–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coupland R, Weakley B (1970) Electron microscopic observations on the adrenal medulla and extra adrenal chromaffin tissue of the postnatal rabbit. J Anat 106:213–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coupland RE, Kent C, Kent SE (1982) Normal function of extra-adrenal chromaffin tissues in the young rabbit and guinea-pig. J Endocrinol 92:433–442

    Article  CAS  PubMed  Google Scholar 

  • Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, Jessen KR (1995) Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15:585–596

    Article  CAS  PubMed  Google Scholar 

  • Doupe AJ, Landis SC, Patterson PH (1985) Environmental influences in the development of neural crest derivatives: glucocorticoids, growth factors, and chromaffin cell plasticity. J Neurosci 5:2119–2142

    Article  CAS  PubMed  Google Scholar 

  • Dulac C, Cameron-Curry P, Ziller C, Le Douarin NM (1988) A surface protein expressed by avian myelinating and nonmyelinating Schwann cells but not by satellite or enteric glial cells. Neuron 1:211–220

    Article  CAS  PubMed  Google Scholar 

  • Dupin E, Le Douarin NM (2014) The neural crest, a multifaceted structure of the vertebrates. Birth Defects Res C 102:187–209

    Article  CAS  Google Scholar 

  • Dupin E, Calloni GW, Le Douarin NM (2010) The cephalic neural crest of amniote vertebrates is composed of a large majority of precursors endowed with neural, melanocytic, chondrogenic and osteogenic potentialities. Cell Cycle 9:238–249

    Article  CAS  PubMed  Google Scholar 

  • Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M et al (1996) GDNF signalling through the ret receptor tyrosine kinase. Nature 381:789–793

    Article  CAS  PubMed  Google Scholar 

  • Dyachuk V, Furlan A, Shahidi MK, Giovenco M, Kaukua N, Konstantinidou C, Pachnis V, Memic F, Marklund U, Muller T, Birchmeier C, Fried K, Ernfors P, Adameyko I (2014) Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 345:82–87

    Article  CAS  PubMed  Google Scholar 

  • El-Maghraby M, Lever JD (1980) Typification and differentiation of medullary cells in the developing rat adrenal. A histochemical and electron microscopic study. J Anat 131:103–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    Article  CAS  PubMed  Google Scholar 

  • Enomoto H, Crawford PA, Gorodinsky A, Heuckeroth RO, Johnson EM Jr, Milbrandt J (2001) RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development 128:3963–3974

    CAS  PubMed  Google Scholar 

  • Eränkö O (1955) Distribution of adrenaline and noradrenaline in the adrenal medulla. Nature 175:88–89

    Article  Google Scholar 

  • Erickson CA, Goins TL (1995) Avian neural crest cells can migrate in the dorsolateral path only if they are specified as melanocytes. Development 121:915–924

    CAS  PubMed  Google Scholar 

  • Ernsberger U, Rohrer H (2009) Development of the autonomic nervous system: new perspectives and open questions. Auton Neurosci 151:1–2

    Article  PubMed  Google Scholar 

  • Ernsberger U, Patzke H, Tissier-Seta JP, Reh T, Goridis C, Rohrer H (1995) The expression of tyrosine hydroxylase and the transcription factors cPhox-2 and Cash-1: evidence for distinct inductive steps in the differentiation of chick sympathetic precursor cells. Mech Dev 52:125–136

    Article  CAS  PubMed  Google Scholar 

  • Ernsberger U, Esposito L, Partimo S, Huber K, Franke A, Bixby JL, Kalcheim C, Unsicker K (2005) Expression of neuronal markers suggests heterogeneity of chick sympathoadrenal cells prior to invasion of the adrenal anlagen. Cell Tissue Res 319:1–13

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Medina I, Outin E, Picard CA, Chettouh Z, Dymecki S, Consalez GG, Coppola E, Brunet JF (2014) Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 345:87–90

    Article  CAS  PubMed  Google Scholar 

  • Finotto S, Krieglstein K, Schober A, Deimling F, Lindner K, Bruhl B, Beier K, Metz J, Garcia-Arraras JE, Roig-Lopez JL, Monaghan P, Schmid W, Cole TJ, Kellendonk C, Tronche F, Schutz G, Unsicker K (1999) Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 126:2935–2944

    CAS  PubMed  Google Scholar 

  • Fortuna V, Pardanaud L, Brunet I, Ola R, Ristori E, Santoro MM, Nicoli S, Eichmann A (2015) Vascular mural cells promote noradrenergic differentiation of embryonic sympathetic neurons. Cell Rep 11:1786–1796

    Article  CAS  PubMed  Google Scholar 

  • Frank E, Sanes JR (1991) Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111:895–908

    CAS  PubMed  Google Scholar 

  • Furlan A, Dyachuk V, Kastriti ME, Calvo-Enrique L, Abdo H, Hadjab S, Chontorotzea T, Akkuratova N, Usoskin D, Kamenev D, Petersen J, Sunadome K, Memic F, Marklund U, Fried K, Topilko P, Lallemend F, Kharchenko PV, Ernfors P, Adameyko I (2017) Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357. https://doi.org/10.1126/science.aal3753

  • Glebova NO, Ginty DD (2004) Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 24:743–751

    Article  CAS  PubMed  Google Scholar 

  • Gonsalvez DG, Cane KN, Landman KA, Enomoto H, Young HM, Anderson CR (2013) Proliferation and cell cycle dynamics in the developing stellate ganglion. J Neurosci 33:5969–5979

    Article  CAS  PubMed  Google Scholar 

  • Gonsalvez DG, Li-Yuen-Fong M, Cane KN, Stamp LA, Young HM, Anderson CR (2015) Different neural crest populations exhibit diverse proliferative behaviors. Dev Neurobiol 75:287–301

    Article  PubMed  Google Scholar 

  • Granholm AC, Srivastava N, Mott JL, Henry S, Henry M, Westphal H, Pichel JG, Shen L, Hoffer BJ (1997) Morphological alterations in the peripheral and central nervous systems of mice lacking glial cell line-derived neurotrophic factor (GDNF): immunohistochemical studies. J Neurosci 17:1168–1178

    Article  CAS  PubMed  Google Scholar 

  • Groves AK, George KM, Tissier-Seta JP, Engel JD, Brunet JF, Anderson DJ (1995) Differential regulation of transcription factor gene expression and phenotypic markers in developing sympathetic neurons. Development 121:887–901

    CAS  PubMed  Google Scholar 

  • Guillemot F, Joyner AL (1993) Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech Dev 42:171–185

    Article  CAS  PubMed  Google Scholar 

  • Guin GH, Gilbert EF, Jones B (1969) Incidental neuroblastoma in infants. Am J Clin Pathol 51:126–136

    Article  CAS  PubMed  Google Scholar 

  • Gut P, Huber K, Lohr J, Bruhl B, Oberle S, Treier M, Ernsberger U, Kalcheim C, Unsicker K (2005) Lack of an adrenal cortex in Sf1 mutant mice is compatible with the generation and differentiation of chromaffin cells. Development 132:4611–4619

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn L, Suter U, Sommer L (1999) P0 And PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development 126:3781–3794

    CAS  PubMed  Google Scholar 

  • Hagedorn L, Paratore C, Brugnoli G, Baert JL, Mercader N, Suter U, Sommer L (2000) The Ets domain transcription factor Erm distinguishes rat satellite glia from Schwann cells and is regulated in satellite cells by neuregulin signaling. Dev Biol 219:44–58

    Article  CAS  PubMed  Google Scholar 

  • Hanani M (2010) Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res Rev 64:304–327

    Article  CAS  PubMed  Google Scholar 

  • Hansford LM, Thomas WD, Keating JM, Burkhart CA, Peaston AE, Norris MD, Haber M, Armati PJ, Weiss WA, Marshall GM (2004) Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci U S A 101:12664–12669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendershot TJ, Liu H, Clouthier DE, Shepherd IT, Coppola E, Studer M, Firulli AB, Pittman DL, Howard MJ (2008) Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev Biol 319:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henion PD, Weston JA (1997) Timing and pattern of cell fate restrictions in the neural crest lineage. Development 124:4351–4359

    CAS  PubMed  Google Scholar 

  • Hervonen A, Korkala O (1972) The effect of hypoxia on the catecholamine content of human fetal abdominal paraganglia and adrenal medulla. Acta Obstet Gynecol Scand 51:17–24

    Article  CAS  PubMed  Google Scholar 

  • Hervonen A, Korkala O (1973) Effect of hypoxia on the fine structure of the catecholamine-storing cells of the human fetal paraganglia. Virchows Arch B 13:341–349

    CAS  Google Scholar 

  • Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125:599–608

    CAS  PubMed  Google Scholar 

  • Hjerling-Leffler J, Marmigere F, Heglind M, Cederberg A, Koltzenburg M, Enerback S, Ernfors P (2005) The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 132:2623–2632

    Article  CAS  PubMed  Google Scholar 

  • Holzmann J, Hennchen M, Rohrer H (2015) Prox1 Identifies proliferating neuroblasts and nascent neurons during neurogenesis in sympathetic ganglia. Dev Neurobiol 75:1352–1367

    Article  CAS  PubMed  Google Scholar 

  • Hong CS, Saint-Jeannet JP (2005) Sox proteins and neural crest development. Semin Cell Dev Biol 16:694–703

    Article  CAS  PubMed  Google Scholar 

  • Hong SJ, Huh YH, Leung A, Choi HJ, Ding Y, Kang UJ, Yoo SH, Buettner R, Kim K-S (2011) Transcription factor AP-2β regulates the neurotransmitter phenotype and maturation of chromaffin cells. Mol Cell Neurosci 46:245–251

    Article  CAS  PubMed  Google Scholar 

  • Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, Milbrandt J (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–282

    Article  CAS  PubMed  Google Scholar 

  • Howard MJ (2005) Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 277:271–286

    Article  CAS  PubMed  Google Scholar 

  • Howard MJ, Stanke M, Schneider C, Wu X, Rohrer H (2000) The transcription factor dHAND is a downstream effector of BMPs in sympathetic neuron specification. Development 127:4073–4081

    CAS  PubMed  Google Scholar 

  • Huber K (2006) The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 298:335–343

    Article  CAS  PubMed  Google Scholar 

  • Huber K, Brühl B, Guillemot F, Olson EN, Ernsberger U, Unsicker K (2002a) Development of chromaffin cells depends on MASH1 function. Development 129:4729–4738

    CAS  PubMed  Google Scholar 

  • Huber K, Combs S, Ernsberger U, Kalcheim C, Unsicker K (2002b) Generation of neuroendocrine chromaffin cells from sympathoadrenal progenitors: beyond the glucocorticoid hypothesis. Ann N Y Acad Sci 971:554–559

    Article  CAS  PubMed  Google Scholar 

  • Huber K, Karch N, Ernsberger U, Goridis C, Unsicker K (2005) The role of Phox2B in chromaffin cell development. Dev Biol 279:501–508

    Article  CAS  PubMed  Google Scholar 

  • Huber K, Kalcheim C, Unsicker K (2009) The development of the chromaffin cell lineage from the neural crest. Auton Neurosci 151:10–16

    Article  CAS  PubMed  Google Scholar 

  • Huber K, Narasimhan P, Shtukmaster S, Pfeifer D, Evans SM, Sun Y (2013) The LIM-Homeodomain transcription factor Islet-1 is required for the development of sympathetic neurons and adrenal chromaffin cells. Dev Biol 380:286–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda Y, Lister J, Bouton JM, Buyukpamukcu M (1981) Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J Pediatr Surg 16:636–644

    Article  CAS  PubMed  Google Scholar 

  • Jacob C (2015) Transcriptional control of neural crest specification into peripheral glia. Glia 63:1883–1896

  • Jänig W (1989) Autonomic nervous system. In: Schmidt RF, Thews G (eds) Human physiology. Springer, Berlin, pp 333–370

  • Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, Raynal V, Puisieux A, Schleiermacher G, Pierron G, Valteau-Couanet D, Frebourg T, Michon J, Lyonnet S, Amiel J, Delattre O (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455:967–970

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7:a020487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ (2004) Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131:5599–5612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahane N, Kalcheim C (1998) Identification of early postmitotic cells in distinct embryonic sites and their possible roles in morphogenesis. Cell Tissue Res 294:297–307

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2007) Expression of glial progenitor markers p75NTR and S100 protein in the developing mouse parathyroid gland. Cell Tissue Res 327:15–23

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y (2014) Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 357:527–548

  • Kannan CR (1986) Anatomy of the adrenal glands. In: Kannan CR (ed) Essential endocrinology: a primer for nonspecialists. Springer, New York, pp 233–234

  • Kasemeier-Kulesa JC, McLennan R, Romine MH, Kulesa PM, Lefcort F (2010) CXCR4 Controls ventral migration of sympathetic precursor cells. J Neurosci 30:13078–13088

    Article  CAS  PubMed  Google Scholar 

  • Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ahrlund-Richter L, Blom H, Brismar H, Lopes NA, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, Fried K, Adameyko I (2014) Glial origin of mesenchymal stem cells in a tooth model system. Nature 513:551–554

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Bekku Y, Suto F, Kitsukawa T, Taniguchi M, Nagatsu I, Nagatsu T, Itoh K, Yagi T, Fujisawa H (2002) Requirement of neuropilin 1-mediated Sema3A signals in patterning of the sympathetic nervous system. Development 129:671–680

    CAS  PubMed  Google Scholar 

  • Kelsh RN (2006) Sorting out Sox10 functions in neural crest development. BioEssays 28:788–798

    Article  PubMed  Google Scholar 

  • Kerosuo L, Bronner-Fraser M (2012) What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol 23:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lo L, Dormand E, Anderson DJ (2003) SOX10 Maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38:17–31

    Article  CAS  PubMed  Google Scholar 

  • Kim CH, Pennisi P, Zhao H, Yakar S, Kaufman JB, Iganaki K, Shiloach J, Scherer PE, Quon MJ, LeRoith D (2006) MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. Am J Physiol Endocrinol Metab 291:E298–E305

    Article  CAS  PubMed  Google Scholar 

  • Kos R, Reedy MV, Johnson RL, Erickson CA (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128:1467–1479

    CAS  PubMed  Google Scholar 

  • Krispin S, Nitzan E, Kalcheim C (2010a) The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol 70:796–812

    Article  PubMed  Google Scholar 

  • Krispin S, Nitzan E, Kassem Y, Kalcheim C (2010b) Evidence for a dynamic spatiotemporal fate map and early fate restrictions of premigratory avian neural crest. Development 137:585–595

    Article  CAS  PubMed  Google Scholar 

  • Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M (1998) Sox10, A novel transcriptional modulator in glial cells. J Neurosci 18:237–250

    Article  CAS  PubMed  Google Scholar 

  • Kurtz A, Zimmer A, Schnutgen F, Bruning G, Spener F, Muller T (1994) The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120:2637–2649

    CAS  PubMed  Google Scholar 

  • Landis SC, Patterson PH (1981) Neural crest cell lineages. Trends Neurosci 4:172–175

    Article  CAS  Google Scholar 

  • Langman J, Guerrant RL, Freeman BG (1966) Behavior of neuro-epithelial cells during closure of the neural tube. J Comp Neurol 127:399–411

    Article  CAS  PubMed  Google Scholar 

  • Lawson SN, Biscoe TJ (1979) Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J Neurocytol 8:265–274

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin NM, Kalcheim C (1999) The neural crest. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Le Douarin N, Teillet MA (1971) Localization, by the method of interspecific grafts of the neural area from which adrenal cells arise in the bird embryo. C R Acad Sci Hebd Seances Acad Sci D 272:481–484

    PubMed  Google Scholar 

  • Le Douarin NM, Teillet MA (1973) The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morpholog 30:31–48

    Google Scholar 

  • Le Douarin N, Dulac C, Dupin E, Cameron-Curry P (1991) Glial cell lineages in the neural crest. Glia 4:175–184

    Article  PubMed  Google Scholar 

  • Le Douarin NM, Calloni GW, Dupin E (2008) The stem cells of the neural crest. Cell Cycle 7:1013–1019

    Article  PubMed  Google Scholar 

  • Levi-Montalcini R (1976) The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron. Prog Brain Res 45:235–258

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Thiery JP (2012) Epithelial-mesenchymal transitions: insights from development. Development 139:3471–3486

    Article  CAS  PubMed  Google Scholar 

  • Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD (2000) Gata3 Loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet 25:209–212

    Article  CAS  PubMed  Google Scholar 

  • Lo L, Tiveron MC, Anderson DJ (1998) MASH1 Activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125:609–620

    CAS  PubMed  Google Scholar 

  • Lohr J, Gut P, Karch N, Unsicker K, Huber K (2006) Development of adrenal chromaffin cells in Sf1 heterozygous mice. Cell Tissue Res 325:437–444

    Article  PubMed  Google Scholar 

  • Lucas ME, Muller F, Rudiger R, Henion PD, Rohrer H (2006) The bHLH transcription factor hand2 is essential for noradrenergic differentiation of sympathetic neurons. Development 133:4015–4024

    Article  CAS  PubMed  Google Scholar 

  • Lumb R, Wiszniak S, Kabbara S, Scherer M, Harvey N, Schwarz Q (2014) Neuropilins define distinct populations of neural crest cells. Neural Dev 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo XR, Ikeda YY, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual-differentiation. Cell 77:481–490

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Gao J, Wehrle-Haller B, Henion PD (2003) Molecular identification of distinct neurogenic and melanogenic neural crest sublineages. Development 130:321–330

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52

    Article  CAS  PubMed  Google Scholar 

  • Mac Auley A, Werb Z, Mirkes PE (1993) Characterization of the unusually rapid cell cycles during rat gastrulation. Development 117:873–883

    CAS  PubMed  Google Scholar 

  • Maden CH, Gomes J, Schwarz Q, Davidson K, Tinker A, Ruhrberg C (2012) NRP1 And NRP2 cooperate to regulate gangliogenesis, axon guidance and target innervation in the sympathetic nervous system. Dev Biol 369:277–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD (2008) Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:759–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manousiouthakis E, Mendez M, Garner MC, Exertier P, Makita T (2014) Venous endothelin guides sympathetic innervation of the developing mouse heart. Nat Commun 5:3918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maro GS, Vermeren M, Voiculescu O, Melton L, Cohen J, Charnay P, Topilko P (2004) Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 7:930–938

    Article  CAS  PubMed  Google Scholar 

  • Mascorro JA, Yates RD (1971) Ultrastructural studies of the effects of reserpine on mouse abdominal sympathetic paraganglia. Anat Rec 170:269–279

    Article  CAS  PubMed  Google Scholar 

  • Mascorro JA, Yates RD (1974) Innervation of abdominal paraganglia: an ultrastructural study. J Morphol 142:153–163

    Article  CAS  PubMed  Google Scholar 

  • Mascorro JA, Yates RD (1977) The anatomical distribution and morphology of extraadrenal chromaffin tissue (abdominal paraganglia) in the dog. Tissue Cell 9:447–460

    Article  CAS  PubMed  Google Scholar 

  • Mascorro JA, Breaux TF, Yates RD (1994) Morphological observations of small granule-containing (chromaffin) cells in the celiac ganglion of the guinea pig, with emphasis on cell contacts. Microsc Res Tech 29:169–176

    Article  CAS  PubMed  Google Scholar 

  • Mayanil CS (2013) Transcriptional and epigenetic regulation of neural crest induction during neurulation. Dev Neurosci 35:361–372

    Article  CAS  PubMed  Google Scholar 

  • McKinney MC, Fukatsu K, Morrison J, McLennan R, Bronner ME, Kulesa PM (2013) Evidence for dynamic rearrangements but lack of fate or position restrictions in premigratory avian trunk neural crest. Development 140:820–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNicol AM (2004) Adrenal Medulla and Paraganglia. Humana, New York, pp 227–243

    Google Scholar 

  • McPherson CE, Varley JE, Maxwell GD (2000) Expression and regulation of type I BMP receptors during early avian sympathetic ganglion development. Dev Biol 221:220–232

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PJ, Timmons PM, Hebert JM, Rigby PW, Tjian R (1991) Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 5:105–119

    Article  CAS  PubMed  Google Scholar 

  • Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A (1996) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi T, Takako N, Hamada M, Maeda A, Fujioka Y, Kuroha T, Huber RE, Hasegawa SL, Rao A, Yamamoto M, Takahashi S, Lim KC, Engel JD (2006) Gata3 Participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133:3871–3881

    Article  CAS  PubMed  Google Scholar 

  • Morikawa Y, D’Autreaux F, Gershon MD, Cserjesi P (2007) Hand2 Determines the noradrenergic phenotype in the mouse sympathetic nervous system. Dev Biol 307:114–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa Y, Zehir A, Maska E, Deng C, Schneider MD, Mishina Y, Cserjesi P (2009) BMP signaling regulates sympathetic nervous system development through Smad4-dependent and -independent pathways. Development 136:3575–3584

  • Moser M, Ruschoff J, Buettner R (1997) Comparative analysis of AP-2 alpha and AP-2 beta gene expression during murine embryogenesis. Dev Dyn 208:115–124

    Article  CAS  PubMed  Google Scholar 

  • Muñoz WA, Trainor PA (2015) Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. In: Paul AT (ed) Current topics in developmental biology, vol 111. Academic, Cambridge, pp 3–26

    Google Scholar 

  • Murphy P, Topilko P, Schneider-Maunoury S, Seitanidou T, Baron-Van Evercooren A, Charnay P (1996) The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development 122:2847–2857

    CAS  PubMed  Google Scholar 

  • Newbern JM (2015) Molecular control of the neural crest and peripheral nervous system development. In: Paul AT (ed) Current topics in developmental biology, vol 111. Academic, Cambridge, pp 201–231

    Google Scholar 

  • Nishino J, Saunders TL, Sagane K, Morrison SJ (2010) Lgi4 Promotes the proliferation and differentiation of glial lineage cells throughout the developing peripheral nervous system. J Neurosci 30:15228–15240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitzan E, Pfaltzgraff ER, Labosky PA, Kalcheim C (2013) Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci U S A 110:12709–12714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noisa P, Raivio T (2014) Neural crest cells: from developmental biology to clinical interventions. Birth Defects Res C 102:263–274

    Article  CAS  Google Scholar 

  • Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318

    Article  CAS  PubMed  Google Scholar 

  • Nowakowski RS, Caviness VS Jr, Takahashi T, Hayes NL (2002) Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. Results Probl Cell Differ 39:1–25

    Article  PubMed  Google Scholar 

  • Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128

    Article  CAS  PubMed  Google Scholar 

  • Ozkaynak E, Abello G, Jaegle M, van Berge L, Hamer D, Kegel L, Driegen S, Sagane K, Bermingham JR Jr, Meijer D (2010) Adam22 Is a major neuronal receptor for Lgi4-mediated Schwann cell signaling. J Neurosci 30:3857–3864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pakkarato S, Chomphoo S, Kagawa Y, Owada Y, Mothong W, Iamsaard S, Sawatpanich T, Kondo H, Hipkaeo W (2015) Immunohistochemical analysis of sustentacular cells in the adrenal medulla, carotid body and sympathetic ganglion of mice using an antibody against brain-type fatty acid binding protein (B-FABP). J Anat 226:348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paratore C, Goerich DE, Suter U, Wegner M, Sommer L (2001) Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development 128:3949–3961

    CAS  PubMed  Google Scholar 

  • Partanen M, Linnoila I, Hervonent A, Rapoport SI (1984a) The effect of aging on extra-adrenal catecholamine storing cells of the rat. Neurobiol Aging 5:105–110

    Article  CAS  PubMed  Google Scholar 

  • Partanen M, Rapoport SI, Reis DJ, Joh TH, Stolk JM, Linnoila I, Teitelman G, Hervonen A (1984b) Catecholamine-synthesizing enzymes in paraganglia of aged Fischer-344 rats. Immunohistochemistry and fluorescence microscopy. Cell Tissue Res 238:217–220

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Morin X, Cremer H, Goridis C, Brunet JF (1999) The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Guillemot F, Brunet JF (2006) Delays in neuronal differentiation in Mash1/Ascl1 mutants. Dev Biol 295:67–75

    Article  CAS  PubMed  Google Scholar 

  • Perez SE, Rebelo S, Anderson DJ (1999) Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126:1715–1728

    CAS  PubMed  Google Scholar 

  • Pfeuty B, David-Pfeuty T, Kaneko K (2008) Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle. Cell Cycle 7:3246–3257

    Article  CAS  PubMed  Google Scholar 

  • Potzner MR, Tsarovina K, Binder E, Penzo-Mendez A, Lefebvre V, Rohrer H, Wegner M, Sock E (2010) Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137:775–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raible DW, Eisen JS (1994) Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development 120:495–503

    CAS  PubMed  Google Scholar 

  • Raposo AA, Vasconcelos FF, Drechsel D, Marie C, Johnston C, Dolle D, Bithell A, Gillotin S, van den Berg DL, Ettwiller L, Flicek P, Crawford GE, Parras CM, Berninger B, Buckley NJ, Guillemot F, Castro DS (2015) Ascl1 Coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Rep 10:1544–1556

    Article  CAS  PubMed Central  Google Scholar 

  • Reid K, Nishikawa S, Bartlett PF, Murphy M (1995) Steel factor directs melanocyte development in vitro through selective regulation of the number of c-kit+ progenitors. Dev Biol 169:568–579

    Article  CAS  PubMed  Google Scholar 

  • Reiff T, Tsarovina K, Majdazari A, Schmidt M, del Pino I, Rohrer H (2010) Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. J Neurosci 30:905–915

    Article  CAS  PubMed  Google Scholar 

  • Reiff T, Huber L, Kramer M, Delattre O, Janoueix-Lerosey I, Rohrer H (2011) Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development 138:4699–4708

    Article  CAS  PubMed  Google Scholar 

  • Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H (1996) Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122:2079–2088

    CAS  PubMed  Google Scholar 

  • Rickmann M, Fawcett JW, Keynes RJ (1985) The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol 90:437–455

    CAS  PubMed  Google Scholar 

  • Ridenour DA, McLennan R, Teddy JM, Semerad CL, Haug JS, Kulesa PM (2014) The neural crest cell cycle is related to phases of migration in the head. Development 141:1095–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Filippa V, Mohamed F, Dominguez S, Scardapane L (2007) Interaction between chromaffin and sustentacular cells in adrenal medulla of viscacha (Lagostomus Maximus Maximus). Anat Histol Embryol 36:182–185

    Article  CAS  PubMed  Google Scholar 

  • Rohrer H (2011) Transcriptional control of differentiation and neurogenesis in autonomic ganglia. Eur J Neurosci 34:1563–1573

    Article  PubMed  Google Scholar 

  • Rohrer H, Thoenen H (1987) Relationship between differentiation and terminal mitosis: chick sensory and ciliary neurons differentiate after terminal mitosis of precursor cells, whereas sympathetic neurons continue to divide after differentiation. J Neurosci 7:3739–3748

    Article  CAS  PubMed  Google Scholar 

  • Rothman TP, Gershon MD, Holtzer H (1978) The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors. Dev Biol 65:322–341

    Article  CAS  PubMed  Google Scholar 

  • Rubin de Celis MF, Garcia-Martin R, Wittig D, Valencia GD, Enikolopov G, Funk RH, Chavakis T, Bornstein SR, Androutsellis-Theotokis A, Ehrhart-Bornstein M (2015) Multipotent glia-like stem cells mediate stress adaptation. Stem Cells 33:2037–2051

    Article  PubMed  CAS  Google Scholar 

  • Ruiz S, Panopoulos AD, Herrerias A, Bissig KD, Lutz M, Berggren WT, Verma IM, Izpisua Belmonte JC (2011) A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Curr Biol 21:45–52

    Article  CAS  PubMed  Google Scholar 

  • Saito D, Takase Y, Murai H, Takahashi Y (2012) The dorsal aorta initiates a molecular cascade that instructs sympatho-adrenal specification. Science 336:1578–1581

    Article  CAS  PubMed  Google Scholar 

  • Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20:233–243

    Article  CAS  PubMed  Google Scholar 

  • Santana MM, Chung KF, Vukicevic V, Rosmaninho-Salgado J, Kanczkowski W, Cortez V, Hackmann K, Bastos CA, Mota A, Schrock E, Bornstein SR, Cavadas C, Ehrhart-Bornstein M (2012) Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 1:783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauka-Spengler T, Bronner-Fraser M (2006) Development and evolution of the migratory neural crest: a gene regulatory perspective. Curr Opin Genet Dev 16:360–366

    Article  CAS  PubMed  Google Scholar 

  • Saxena S, Wahl J, Huber-Lang MS, Stadel D, Braubach P, Debatin KM, Beltinger C (2013) Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands. PLoS ONE 8:e64454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling TF, Kimmel CB (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120:483–494

    CAS  PubMed  Google Scholar 

  • Schmidt M, Lin S, Pape M, Ernsberger U, Stanke M, Kobayashi K, Howard MJ, Rohrer H (2009) The bHLH transcription factor Hand2 is essential for the maintenance of noradrenergic properties in differentiated sympathetic neurons. Dev Biol 329:191–200

  • Schmidt M, Huber L, Majdazari A, Schutz G, Williams T, Rohrer H (2011) The transcription factors AP-2beta and AP-2alpha are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol 355:89–100

    Article  CAS  PubMed  Google Scholar 

  • Schneider C, Wicht H, Enderich J, Wegner M, Rohrer H (1999) Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24:861–870

    Article  CAS  PubMed  Google Scholar 

  • Schober A, Parlato R, Huber K, Kinscherf R, Hartleben B, Huber TB, Schutz G, Unsicker K (2013) Cell loss and autophagy in the extra-adrenal chromaffin organ of Zuckerkandl are regulated by glucocorticoid signalling. J Neuroendocrinol 25:34–47

    Article  CAS  PubMed  Google Scholar 

  • Schwarz Q, Ruhrberg C (2010) Neuropilin, you gotta let me know: should I stay or should I go? Cell Adhes Migr 4:61–66

    Article  Google Scholar 

  • Schwarz Q, Maden CH, Davidson K, Ruhrberg C (2009a) Neuropilin-mediated neural crest cell guidance is essential to organise sensory neurons into segmented dorsal root ganglia. Development 136:1785–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz Q, Maden CH, Vieira JM, Ruhrberg C (2009b) Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proc Natl Acad Sci U S A 106:6164–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serbedzija GN, Bronner-Fraser M, Fraser SE (1989) A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 106:809–816

    CAS  PubMed  Google Scholar 

  • Serbedzija GN, Fraser SE, Bronner-Fraser M (1990) Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108:605–612

    CAS  PubMed  Google Scholar 

  • Shah NM, Marchionni MA, Isaacs I, Stroobant P, Anderson DJ (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77:349–360

    Article  CAS  PubMed  Google Scholar 

  • Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85:331–343

    Article  CAS  PubMed  Google Scholar 

  • Shanklin DR, Soteloav C (1969) In situ tumors in fetuses, newborns and infants. Biol Neonat 14:286-&

    Article  Google Scholar 

  • Shi H, Cui H, Alam G, Gunning WT, Nestor A, Giovannucci D, Zhang M, Ding HF (2008) Nestin expression defines both glial and neuronal progenitors in postnatal sympathetic ganglia. J Comp Neurol 508:867–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shtukmaster S, Schier MC, Huber K, Krispin S, Kalcheim C, Unsicker K (2013) Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shtukmaster S, Narasimhan P, El Faitwri T, Stubbusch J, Ernsberger U, Rohrer H, Unsicker K, Huber K (2016) MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells. Cell Tissue Res 365:225–232

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Schoenwolf GC (1987) Cell cycle and neuroepithelial cell shape during bending of the chick neural plate. Anat Rec 218:196–206

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Schoenwolf GC (1988) Role of cell-cycle in regulating neuroepithelial cell shape during bending of the chick neural plate. Cell Tissue Res 252:491–500

    Article  CAS  PubMed  Google Scholar 

  • Sommer L, Ma Q, Anderson DJ (1996) Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol Cell Neurosci 8:221–241

    Article  CAS  PubMed  Google Scholar 

  • Stanke M, Junghans D, Geissen M, Goridis C, Ernsberger U, Rohrer H (1999) The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 126:4087–4094

    CAS  PubMed  Google Scholar 

  • Stanke M, Stubbusch J, Rohrer H (2004) Interaction of Mash1 and Phox2b in sympathetic neuron development. Mol Cell Neurosci 25:374–382

    Article  CAS  PubMed  Google Scholar 

  • Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985

    Article  CAS  PubMed  Google Scholar 

  • Stewart HJ, Brennan A, Rahman M, Zoidl G, Mitchell PJ, Jessen KR, Mirsky R (2001) Developmental regulation and overexpression of the transcription factor AP-2, a potential regulator of the timing of Schwann cell generation. Eur J Neurosci 14:363–372

    Article  CAS  PubMed  Google Scholar 

  • Stubbusch J, Narasimhan P, Huber K, Unsicker K, Rohrer H, Ernsberger U (2013) Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells. Neural Dev 8:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stubbusch J, Narasimhan P, Hennchen M, Huber K, Unsicker K, Ernsberger U, Rohrer H (2015) Lineage and stage specific requirement for Dicer1 in sympathetic ganglia and adrenal medulla formation and maintenance. Dev Biol 400:210–223

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Maker VK (2006) Organs of Zuckerkandl: their surgical significance and a review of a century of literature. Am J Surg 192:224–234

    Article  PubMed  Google Scholar 

  • Suzuki T, Kachi T (1994) Differences between adrenaline and Noradrenaline cells in cellular-association with supporting cells in the adrenal-medulla of the pig - an Immunohistochemical study. Neurosci Lett 176:217–220

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci 16:6183–6196

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1997) The mathematics of neocortical neuronogenesis. Dev Neurosci 19:17–22

    Article  CAS  PubMed  Google Scholar 

  • Theveneau E, Duband JL, Altabef M (2007) Ets-1 confers cranial features on neural crest delamination. PLoS ONE 2:e1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas AJ, Erickson CA (2009) FOXD3 Regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136:1849–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SA, Matsumoto AM, Palmiter RD (1995) Noradrenaline is essential for mouse fetal development. Nature 374:643–646

    Article  CAS  PubMed  Google Scholar 

  • Tischler AS, Ruzicka LA, Donahue SR, DeLellis RA (1989) Chromaffin cell proliferation in the adult rat adrenal medulla. Int J Dev Neurosci 7:439–448

    Article  CAS  PubMed  Google Scholar 

  • Tsarovina K, Pattyn A, Stubbusch J, Muller F, Van Der Wees J, Schneider C, Brunet JF, Rohrer H (2004) Essential role of Gata transcription factors in sympathetic neuron development. Development 131:4775–4786

    Article  CAS  PubMed  Google Scholar 

  • Tsarovina K, Schellenberger J, Schneider C, Rohrer H (2008) Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves notch signaling. Mol Cell Neurosci 37:20–31

    Article  CAS  PubMed  Google Scholar 

  • Tsarovina K, Reiff T, Stubbusch J, Kurek D, Grosveld FG, Parlato R, Schutz G, Rohrer H (2010) The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J Neurosci 30:10833–10843

    Article  CAS  PubMed  Google Scholar 

  • Uesaka T, Nagashimada M, Enomoto H (2015) Neuronal differentiation in Schwann cell lineage underlies postnatal neurogenesis in the enteric nervous system. J Neurosci 35:9879–9888

    Article  CAS  PubMed  Google Scholar 

  • Unsicker K, Krisch B, Otten U, Thoenen H (1978) Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: impairment by glucocorticoids. Proc Natl Acad Sci U S A 75:3498–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dusen NJ, Vincentz JW, Firulli BA, Howard MJ, Rubart M, Firulli AB (2014) Loss of Hand2 in a population of Periostin lineage cells results in pronounced bradycardia and neonatal death. Dev Biol 388:149–158

    Article  CAS  Google Scholar 

  • Varley JE, Maxwell GD (1996) BMP-2 and BMP-4, but not BMP-6, increase the number of adrenergic cells which develop in quail trunk neural crest cultures. Exp Neurol 140:84–94

    Article  CAS  PubMed  Google Scholar 

  • Varley JE, Wehby RG, Rueger DC, Maxwell GD (1995) Number of adrenergic and islet-1 immunoreactive cells is increased in avian trunk neural crest cultures in the presence of human recombinant osteogenic protein-1. Dev Dyn 203:434–447

    Article  CAS  PubMed  Google Scholar 

  • Varley JE, McPherson CE, Zou H, Niswander L, Maxwell GD (1998) Expression of a constitutively active type I BMP receptor using a retroviral vector promotes the development of adrenergic cells in neural crest cultures. Dev Biol 196:107–118

    Article  CAS  PubMed  Google Scholar 

  • Vega-Lopez GA, Cerrizuela S, Aybar MJ (2017) Trunk neural crest cells: formation, migration and beyond. Int J Dev Biol 61:5–15

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Mongera A, Bonanomi D, Cyganek L, Pfaff SL, Nusslein-Volhard C, Marquardt T (2014) A conserved axon type hierarchy governing peripheral nerve assembly. Development 141:1875–1883

    Article  CAS  PubMed  Google Scholar 

  • Waring H (1936) Development of the adrenal gland of the mouse. Q J Microsc Sci 78:329–336

    Google Scholar 

  • Wegner M, Stolt CC (2005) From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci 28:583–588

    Article  CAS  PubMed  Google Scholar 

  • White J, Dalton S (2005) Cell cycle control of embryonic stem cells. Stem Cell Rev 1:131–138

    Article  CAS  PubMed  Google Scholar 

  • Wildner H, Gierl MS, Strehle M, Pla P, Birchmeier C (2008) Insm1 (IA-1) is a crucial component of the transcriptional network that controls differentiation of the sympatho-adrenal lineage. Development 135:473–481

    Article  CAS  PubMed  Google Scholar 

  • Wilson YM, Richards KL, Ford-Perriss ML, Panthier JJ, Murphy M (2004) Neural crest cell lineage segregation in the mouse neural tube. Development 131:6153–6162

    Article  CAS  PubMed  Google Scholar 

  • Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, Wilton DK, Al-Shawi R, Simons P, Shen J, Guillemot F, Radtke F, Meijer D, Feltri ML, Wrabetz L, Mirsky R, Jessen KR (2009) Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci 12:839–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurtman RJ, Axelrod J (1966) Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem 241:2301–2305

    CAS  PubMed  Google Scholar 

  • Young HM, Bergner AJ, Muller T (2003) Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol 456:1–11

    Article  PubMed  Google Scholar 

  • Young HM, Cane KN, Anderson CR (2011) Development of the autonomic nervous system: a comparative view. Auton Neurosci 165:10–27

    Article  CAS  PubMed  Google Scholar 

  • Zackenfels K, Oppenheim RW, Rohrer H (1995) Evidence for an important role of IGF-I and IGF-II for the early development of chick sympathetic neurons. Neuron 14:731–741

    Article  CAS  PubMed  Google Scholar 

  • Zhou QY, Quaife CJ, Palmiter RD (1995) Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374:640–643

    Article  CAS  PubMed  Google Scholar 

  • Zirlinger M, Lo L, McMahon J, McMahon AP, Anderson DJ (2002) Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate. Proc Natl Acad Sci U S A 99:8084–8089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Gonsalvez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, W.H., Anderson, C.R. & Gonsalvez, D.G. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 372, 171–193 (2018). https://doi.org/10.1007/s00441-017-2693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2693-x

Keywords

Navigation