Skip to main content

Advertisement

Log in

A population of nonneuronal GFRα3-expressing cells in the bone marrow resembles nonmyelinating Schwann cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Artemin is a neurotrophic factor that plays a crucial role in the regulation of neural development and regeneration and has also been implicated in the pathogenesis of inflammatory pain. The receptor for artemin, GFRα3, is expressed by sympathetic and nociceptive sensory neurons, including some that innervate the bone marrow, but it is unclear if it is also expressed in other cell types in the bone marrow. Our goal in the present study was to characterise the expression of GFRα3 in nonneuronal cells in the bone marrow. Immunohistochemical studies revealed that GFRα3-expressing cells in the bone marrow are spatially associated with blood vessels and are in intimate contact with nerve fibres. We used various combinations of markers to distinguish different cell types and found that the GFRα3-expressing cells expressed markers of nonmyelinating Schwann cells (e.g. GFAP, p75NTR, nestin). Analysis of bone marrow sections of Wnt1-reporter mice also demonstrated that they originate from the neural crest. Further characterisation using flow cytometry revealed that GFRα3 is expressed in a population of CD51+Sca1PDGFRα cells, reinforcing the notion that they are neural crest-derived, nonmyelinating Schwann cells. In conclusion, there is a close association between peripheral nerve terminals and a population of nonneuronal cells that express GFRα3 in the bone marrow. The nonneuronal cells have characteristics consistent with a neural crest-derived, nonmyelinating Schwann cell phenotype. Our findings provide a better understanding of the expression pattern of GFRα3 in the bone marrow microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afan AM, Broome CS, Nicholls SE, Whetton AD, Miyan JA (1997) Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br J Haematol 98:569–577

    Article  CAS  PubMed  Google Scholar 

  • Albers KM, Zhang XL, Diges CM, Schwartz ES, Yang CI, Davis BM, Gold MS (2014) Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons. Mol Pain 10:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez-Viejo M, Menendez-Menendez Y, Otero-Hernandez J (2015) CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J Stem Cells 7:470–476

    Article  PubMed  PubMed Central  Google Scholar 

  • Andres R, Forgie A, Wyatt S, Chen Q, de Sauvage FJ, Davies AM (2001) Multiple effects of artemin on sympathetic neurone generation, survival and growth. Development (Cambridge, England) 128:3685–3695

    Article  CAS  Google Scholar 

  • Anthony BA, Link DC (2014) Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 35:32–37

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM Jr, Milbrandt J (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21:1291–1302

    Article  CAS  PubMed  Google Scholar 

  • Barilani M, Banfi F, Sironi S, Ragni E, Guillaumin S, Polveraccio F, Rosso L, Moro M, Astori G, Pozzobon M, Lazzari L (2018) Low-affinity nerve growth factor receptor (CD271) heterogeneous expression in adult and fetal mesenchymal stromal cells. Sci Rep 8:9321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bespalov MM, Sidorova YA, Tumova S, Ahonen-Bishopp A, Magalhaes AC, Kulesskiy E, Paveliev M, Rivera C, Rauvala H, Saarma M (2011) Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol 192:153–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulais PE, Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125:2621–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown A, Machan JT, Hayes L, Zervas M (2011) Molecular organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo. J Comp Neurol 519:2978–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruckner K (2011) Blood cells need glia, too: a new role for the nervous system in the bone marrow niche. Cell Stem Cell 9:493–495

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  • Chidlow G, Daymon M, Wood JP, Casson RJ (2011) Localization of a wide-ranging panel of antigens in the rat retina by immunohistochemistry: comparison of Davidson’s solution and formalin as fixatives. J Histochem Cytochem 59:884–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corfas G, Velardez MO, Ko CP, Ratner N, Peles E (2004) Mechanisms and roles of axon-Schwann cell interactions. J Neurosci 24:9250–9260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dechant G, Barde YA (2002) The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci 5:1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Doran JF, Jackson P, Kynoch PA, Thompson RJ (1983) Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem 40:1542–1547

    Article  CAS  PubMed  Google Scholar 

  • English A, Kosoy R, Pawlinski R, Bamezai A (2000) A monoclonal antibody against the 66-kDa protein expressed in mouse spleen and thymus inhibits Ly-6A.2-dependent cell-cell adhesion. J Immunol (Baltimore, Md : 1950) 165:3763–3771

    Article  CAS  Google Scholar 

  • Ernsberger U (2008) The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 333:353–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farahani RM, Sarrafpour B, Simonian M, Li Q, Hunter N (2012) Directed glia-assisted angiogenesis in a mature neurosensory structure: pericytes mediate an adaptive response in human dental pulp that maintains blood-barrier function. J Comp Neurol 520:3803–3826

    Article  CAS  PubMed  Google Scholar 

  • Fasanella KE, Christianson JA, Chanthaphavong RS, Davis BM (2008) Distribution and neurochemical identification of pancreatic afferents in the mouse. J Comp Neurol 509:42–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, Spencer-Dene B, Latouche M, Mirsky R, Jessen KR, Klein R, Raivich G, Behrens A (2012) c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol 198:127–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Garcia A, Korn C, Garcia-Fernandez M, Domingues O, Villadiego J, Martin-Perez D, Isern J, Bejarano-Garcia JA, Zimmer J, Perez-Simon JA, Toledo-Aral JJ, Michel T, Airaksinen MS, Mendez-Ferrer S (2018) Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood

  • Green AC, Kocovski P, Jovic T, Walia MK, Chandraratna RAS, Martin TJ, Baker EK, Purton LE (2017) Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells. Exp Cell Res 350:284–297

    Article  CAS  PubMed  Google Scholar 

  • Hanbury R, Ling ZD, Wuu J, Kordower JH (2003) GFAP knockout mice have increased levels of GDNF that protect striatal neurons from metabolic and excitotoxic insults. J Comp Neurol 461:307–316

    Article  CAS  PubMed  Google Scholar 

  • Harvey P, Gong B, Rossomando AJ, Frank E (2010) Topographically specific regeneration of sensory axons in the spinal cord. Proc Natl Acad Sci U S A 107:11585–11590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, Milbrandt J (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–282

    Article  CAS  PubMed  Google Scholar 

  • Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S (1997) Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389:966–970

    Article  CAS  PubMed  Google Scholar 

  • Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, Sanchez-Cabo F, Mendez-Ferrer S (2014) The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife 3:e03696

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwase T, Jung CG, Bae H, Zhang M, Soliven B (2005) Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. J Neurochem 94:1488–1499

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (1999) Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 22:402–410

    Article  CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56:1552–1565

    Article  PubMed  Google Scholar 

  • Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7:a020487

    Article  PubMed  PubMed Central  Google Scholar 

  • Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421

    Article  CAS  PubMed  Google Scholar 

  • Koh BH, Roy R, Hollywood MA, Thornbury KD, McHale NG, Sergeant GP, Hatton WJ, Ward SM, Sanders KM, Koh SD (2012) Platelet-derived growth factor receptor-alpha cells in mouse urinary bladder: a new class of interstitial cells. J Cell Mol Med 16:691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurahashi M, Nakano Y, Peri LE, Townsend JB, Ward SM, Sanders KM (2013) A novel population of subepithelial platelet-derived growth factor receptor alpha-positive cells in the mouse and human colon. Am J Physiol Gastrointest Liver Physiol 304:G823–G834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Douarin NM, Dupin E (2003) Multipotentiality of the neural crest. Curr Opin Genet Dev 13:529–536

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ghazanfari R, Zacharaki D, Lim HC, Scheding S (2016) Isolation and characterization of primary bone marrow mesenchymal stromal cells. Ann N Y Acad Sci 1370:109–118

    Article  CAS  PubMed  Google Scholar 

  • Lopes CS, Daifalla N, Das B, Dias da Silva V, Campos-Neto A (2016) CD271+ mesenchymal stem cells as a possible infectious niche for Leishmania infantum. PLoS One 11:e0162927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenzo LE, Ramien M, St Louis M, De Koninck Y, Ribeiro-da-Silva A (2008) Postnatal changes in the Rexed lamination and markers of nociceptive afferents in the superficial dorsal horn of the rat. J Comp Neurol 508:592–604

    Article  PubMed  Google Scholar 

  • Malin SA, Molliver DC, Koerber HR, Cornuet P, Frye R, Albers KM, Davis BM (2006) Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J Neurosci 26:8588–8599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447

    Article  CAS  PubMed  Google Scholar 

  • Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldrich RX, Gobius I, Pollak T, Zhang J, Ren T, Brown L, Mori S, De Juan Romero C, Britanova O, Tarabykin V, Richards LJ (2010) Molecular regulation of the developing commissural plate. J Comp Neurol 518:3645–3661

    Article  PubMed  PubMed Central  Google Scholar 

  • Monk KR, Feltri ML, Taveggia C (2015) New insights on Schwann cell development. Glia 63:1376–1393

    Article  PubMed  PubMed Central  Google Scholar 

  • Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E, Suzuki S, Miyauchi-Hara C, Nagoshi N, Sunabori T, Shimmura S, Miyawaki A, Nakagawa T, Suda T, Okano H, Matsuzaki Y (2009) Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 206:2483–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura Y, Arai F, Iwasaki H, Hosokawa K, Kobayashi I, Gomei Y, Matsumoto Y, Yoshihara H, Suda T (2010) Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 116:1422–1432

    Article  CAS  PubMed  Google Scholar 

  • Nencini S, Ringuet M, Kim DH, Greenhill C, Ivanusic JJ (2018) GDNF, neurturin, and artemin activate and sensitize bone afferent neurons and contribute to inflammatory bone pain. J Neurosci 38:4899–4911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nencini S, Thai J, Ivanusic JJ (2019) Sequestration of artemin reduces inflammation-induced activation and sensitization of bone marrow nociceptors in a rodent model of carrageenan-induced inflammatory bone pain. Eur J Pain (London, England) 23:397–409

    Article  CAS  Google Scholar 

  • Nishino J, Mochida K, Ohfuji Y, Shimazaki T, Meno C, Ohishi S, Matsuda Y, Fujii H, Saijoh Y, Hamada H (1999) GFR alpha3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion. Neuron 23:725–736

    Article  CAS  PubMed  Google Scholar 

  • Orozco OE, Walus L, Sah DW, Pepinsky RB, Sanicola M (2001) GFRalpha3 is expressed predominantly in nociceptive sensory neurons. Eur J Neurosci 13:2177–2182

    Article  CAS  PubMed  Google Scholar 

  • Paratcha G, Ledda F, Baars L, Coulpier M, Besset V, Anders J, Scott R, Ibanez CF (2001) Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29:171–184

    Article  CAS  PubMed  Google Scholar 

  • Paul CE, Vereker E, Dickson KM, Barker PA (2004) A pro-apoptotic fragment of the p75 neurotrophin receptor is expressed in p75NTRExonIV null mice. J Neurosci 24:1917–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, Frenette PS (2013) PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 210:1351–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY) 284:143–147

    Article  CAS  Google Scholar 

  • Schmutzler BS, Roy S, Pittman SK, Meadows RM, Hingtgen CM (2011) Ret-dependent and Ret-independent mechanisms of Gfl-induced sensitization. Mol Pain 7:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer NJ, Kyloh M, Duffield M (2014) Identification of different types of spinal afferent nerve endings that encode noxious and innocuous stimuli in the large intestine using a novel anterograde tracing technique. PLoS One 9:e112466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Peleshok JC, Ribeiro-da-Silva A (2009) Distribution of P2X(3)-immunoreactive fibers in hairy and glabrous skin of the rat. J Comp Neurol 514:555–566

    Article  CAS  PubMed  Google Scholar 

  • Trupp M, Belluardo N, Funakoshi H, Ibanez CF (1997) Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J Neurosci 17:3554–3567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trupp M, Scott R, Whittemore SR, Ibanez CF (1999) Ret-dependent and -independent mechanisms of glial cell line-derived neurotrophic factor signaling in neuronal cells. J Biol Chem 274:20885–20894

    Article  CAS  PubMed  Google Scholar 

  • Underwood CK, Coulson EJ (2008) The p75 neurotrophin receptor. Int J Biochem Cell Biol 40:1664–1668

    Article  CAS  PubMed  Google Scholar 

  • Wang R, King T, Ossipov MH, Rossomando AJ, Vanderah TW, Harvey P, Cariani P, Frank E, Sah DW, Porreca F (2008) Persistent restoration of sensory function by immediate or delayed systemic artemin after dorsal root injury. Nat Neurosci 11:488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhang P, Liu L, Zou L (2013) Hierarchical organization and regulation of the hematopoietic stem cell osteoblastic niche. Crit Rev Oncol Hematol 85:1–8

    Article  PubMed  Google Scholar 

  • Widenfalk J, Tomac A, Lindqvist E, Hoffer B, Olson L (1998) GFRalpha-3, a protein related to GFRalpha-1, is expressed in developing peripheral neurons and ensheathing cells. Eur J Neurosci 10:1508–1517

    Article  CAS  PubMed  Google Scholar 

  • Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24:585–593

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113:1250–1256

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:1146–1158

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Hutto D, Sah DW (2006) Distribution of GDNF family receptor alpha3 and RET in rat and human non-neural tissues. J Mol Histol 37:69–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Roberto Cappai and Phan Truong for generously providing us with tissue from C57BL/6 mice. Louise E. Purton was an NHMRC Senior Research Fellow.

Funding

This work was supported by funding from the National Health and Medical Research Council and the Operational Infrastructure Support Program from the Victorian Government (to St. Vincent’s Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Ivanusic.

Ethics declarations

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors. All experiments performed were in accordance with ethical standards of the University of Melbourne Animal Experimentation Ethics Committee, St. Vincent’s Health Animal Ethics Committee and the Animal Welfare Committee of Flinders University of South Australia.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, J., Green, A.C., Stamp, L.A. et al. A population of nonneuronal GFRα3-expressing cells in the bone marrow resembles nonmyelinating Schwann cells. Cell Tissue Res 378, 441–456 (2019). https://doi.org/10.1007/s00441-019-03068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03068-w

Keywords

Navigation