Skip to main content

Advertisement

Log in

Quantitation and chemical coding of enteroendocrine cell populations in the human jejunum

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Recent studies reveal substantial species and regional differences in enteroendocrine cell (EEC) populations, including differences in patterns of hormone coexpression, which limit extrapolation between animal models and human. In this study, jejunal samples, with no histologically identifiable pathology, from patients undergoing Whipple’s procedure were investigated for the presence of gastrointestinal hormones using double- and triple-labelling immunohistochemistry and high-resolution confocal microscopy. Ten hormones (5-HT, CCK, secretin, proglucagon-derived peptides, PYY, GIP, somatostatin, neurotensin, ghrelin and motilin) were localised in EEC of the human jejunum. If only single staining is considered, the most numerous EEC were those containing 5-HT, CCK, ghrelin, GIP, motilin, secretin and proglucagon-derived peptides. All hormones had some degree of colocalisation with other hormones. This included a population of EEC in which GIP, CCK and proglucagon-derived peptides are costored, and four 5-HT cell populations, 5-HT/GIP, 5-HT/ghrelin, 5-HT/PYY, and 5-HT/secretin cell groups, and a high degree of overlap between motilin and ghrelin. The presence of 5-HT in many secretin cells is consistent across species, whereas lack of 5-HT and CCK colocalisation distinguishes human from mouse. It seems likely that the different subclasses of 5-HT cells subserve different roles. At a subcellular level, we examined the vesicular localisation of secretin and 5-HT, and found these to be separately stored. We conclude that hormone-containing cells in the human jejunum do not comply with a one-cell, one-hormone classification and that colocalisations of hormones are likely to define subtypes of EEC that have different roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrian TE, Ferri G-L, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR (1985) Human distribution and release of a putative’ new gut hormone, peptide YY. Gastroenterology 89:1070–1077

    Article  CAS  PubMed  Google Scholar 

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan AMJ, Doyle AD, Accili EA (1990) Canine jejunal submucosa cultures: characterization and release of neural somatostatin. Can J Physiol Pharmacol 68:705–710

    Article  CAS  PubMed  Google Scholar 

  • Cetin Y (1990) Secretin-cells of the mammalian intestine contain serotonin. Histochemistry 93:601–606

    Article  CAS  PubMed  Google Scholar 

  • Cheung GWC, Kokorovic A, Lam CKL, Chari M, Lam TKT (2009) Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab 10:99–109

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Callaghan B, Bron R, Bravo DM, Furness JB (2014a) Identification of enteroendocrine cells that express TRPA1 channels in the mouse intestine. Cell Tissue Res 356:77–82

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Robinson ES, Rivera LR, McMillan PJ, Testro A, Nikfarjam M, Bravo DM, Furness JB (2014b) Glucagon-like peptide 1 and peptide YY are in separate storage organelles in enteroendocrine cells. Cell Tissue Res 357:63–69

    Article  CAS  PubMed  Google Scholar 

  • Cho H-J, Kosari S, Hunne B, Callaghan B, Rivera LR, Bravo DM, Furness JB (2015) Differences in hormone localisation patterns of K and L type enteroendocrine cells in the mouse and pig small intestine and colon. Cell Tissue Res 359:693–698

    Article  CAS  PubMed  Google Scholar 

  • Deloose E, Janssen P, Depoortere I, Tack J (2012) The migrating motor complex: control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol 9:271–285

    Article  CAS  Google Scholar 

  • Deloose E, Vos R, Corsetti M, Depoortere I, Tack J (2015) Endogenous motilin, but not ghrelin plasma levels fluctuate in accordance with gastric phase III activity of the migrating motor complex in man. Neurogastroenterol Motil 27:63–71

    Article  CAS  PubMed  Google Scholar 

  • Diwakarla S, Fothergill LJ, Fakhry J, Callaghan B, Furness JB (2017) Heterogeneity of enterochromaffin cells within the gastrointestinal tract. Neurogastroenterol Motil 29:e13101

    Article  CAS  Google Scholar 

  • Egerod KL, Engelstoft MS, Grunddal KV, Nøhr MK, Secher A, Sakata I, Pedersen J, Windeløv JA, Füchtbauer E-M, Olsen J, Sundler F, Christensen JP, Wierup N, Olsen JV, Holst JJ, Zigman JM, Poulsen SS, Schwartz TW (2012) A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 153:5782–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelstoft MS, Egerod KL, Lund ML, Schwartz TW (2013) Enteroendocrine cell types revisited. Curr Opin Pharmacol 13:912–921

    Article  CAS  PubMed  Google Scholar 

  • Fakhry J, Wang J, Martins P, Fothergill LJ, Hunne B, Prieur P, Shulkes A, Rehfeld JF, Callaghan B, Furness JB (2017) Distribution and characterisation of CCK containing enteroendocrine cells of the mouse small and large intestine. Cell Tissue Res 369:245–253

    Article  CAS  PubMed  Google Scholar 

  • Fothergill LJ, Furness JB (2018) Diversity of enteroendocrine cells investigated at cellular and subcellular levels: the need for a new classification scheme. Histochem Cell Biol 150:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fothergill LJ, Callaghan B, Hunne B, Bravo DM, Furness JB (2017) Costorage of enteroendocrine hormones evaluated at the cell and subcellular levels in male mice. Endocrinology 158:2113–2123

    Article  CAS  PubMed  Google Scholar 

  • Fothergill LJ, Ringuet MT, Sioras E, Hunne B, Fazio Coles TE, Martins P, Furness JB (2019) Cellular and sub-cellular localisation of oxyntomodulin-like immunoreactivity in enteroendocrine cells of human, mouse, pig, and rat. Cell Tissue Res 375:359–369

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Hunne B, Matsuda N, Yin L, Russo D, Kato I, Fujimiya M, Patterson M, McLeod J, Andrews ZB, Bron R (2011) Investigation of the presence of ghrelin in the central nervous system of the rat and mouse. Neuroscience 193:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Op Endoc Diab Obes 20:14–21

    Article  CAS  Google Scholar 

  • Glass LL, Calero-Nieto FJ, Jawaid W, Larraufie P, Kay RG, Göttgens B, Reimann F, Gribble FM (2017) Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine. Mol Metab 6:1296–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gribble FM, Reimann F (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299

    Article  CAS  PubMed  Google Scholar 

  • Grunddal KV, Ratner CF, Svendsen B, Sommer F, Engelstoft MS, Madsen AN, Pedersen J, Nøhr MK, Egerod KL, Nawrocki AR, Kowalski T, Howard AD, Poulsen SS, Offermanns S, Bäckhed F, Holst JJ, Holst B, Schwartz TW (2015) Neurotensin is co-expressed, co-released and acts together with GLP-1 and PYY in enteroendocrine control of metabolism. Endocrinology 157:176–194

    Article  PubMed  CAS  Google Scholar 

  • Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CAM, Parker HE, Morley TCE, Yeo GSH, Reimann F, Gribble FM (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153:3054–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Irwin DM, Chen R, Zhang YP (2010) Stepwise loss of motilin and its specific receptor genes in rodents. J Mol Endocrinol 44:37–44

    Article  CAS  PubMed  Google Scholar 

  • Helander HF, Fändriks L (2012) The enteroendocrine “letter cells” – time for a new nomenclature? Scand J Gastroenterol 47:3–12

    Article  CAS  PubMed  Google Scholar 

  • Hörsch D, Fink T, Göke B, Arnold R, Büchler M, Weihe E (1994) Distribution and chemical phenotypes of neuroendocrine cells in the human anal canal. Regul Pept 54:527–542

    Article  PubMed  Google Scholar 

  • Kovacs TOG, Walsh JH, Maxwell V, Wong HC, Azuma T, Katt E (1989) Gastrin is a major mediator of the gastric phase of acid secretion in dogs: proof by monoclonal antibody neutralization. Gastroenterology 97:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Levin F, Edholm T, Schmidt PT, Grybäck P, Jacobsson H, Degerblad M, Höybye C, Holst JJ, Rehfeld JF, Hellström PM, Näslund E (2006) Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J Clin Endocrinol Metab 91:3296–3302

    Article  CAS  PubMed  Google Scholar 

  • Lo C-M, Obici S, Dong HH, Haas M, Lou D, Kim DH, Liu M, D’Alessio D, Woods SC, Tso P (2011) Impaired insulin secretion and enhanced insulin sensitivity in cholecystokinin-deficient mice. Diabetes 60:2000–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez MJ, Upchurch BH, Rindi G, Leiter AB (1995) Studies in transgenic mice reveal potential relationships between secretin-producing cells and other endocrine cell types. J Biol Chem 270:885–891

    Article  CAS  PubMed  Google Scholar 

  • Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ (2017) The diverse metabolic roles of peripheral serotonin. Endocrinology 158:1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Martins P, Fakhry J, Chaves de Oliveira E, Hunne B, Fothergill LJ, Ringuet M, d’Ávila Reis D, Rehfeld JF, Callaghan B, Furness JB (2017) Analysis of enteroendocrine cell populations in the human colon. Cell Tissue Res 367:361–368

    Article  CAS  Google Scholar 

  • Mawe GM, Hoffman JM (2013) Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 10:473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen K, Christensen LL, Holst JJ, Orskov C (2003) GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114:189–196

    Article  CAS  PubMed  Google Scholar 

  • Musson MC, Jepeal LI, Finnerty JR, Wolfe MM (2011) Evolutionary expression of glucose-dependent-insulinotropic polypeptide (GIP). Regul Pept 171:26–34

    Article  CAS  PubMed  Google Scholar 

  • Patterson M, Murphy KG, le Roux CW, Ghatei MA, Bloom SR (2005) Characterization of ghrelin-like immunoreactivity in human plasma. J Clin Endocrinol Metab 90:2205–2211

    Article  CAS  PubMed  Google Scholar 

  • Peeters TL, Muls E, Janssens J, Urbain JL, Bex M, Van Cutsem E, Bouillon R (1992) Effect of motilin on gastric emptying in patients with diabetic gastroparesis. Effect of motilin on gastric emptying in patients with diabetic gastroparesis. Gastroenterology 102:97–101

    Article  CAS  PubMed  Google Scholar 

  • Reynaud Y, Fakhry J, Fothergill L, Callaghan B, Ringuet MT, Hunne B, Bravo DM, Furness JB (2016) The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract. Cell Tissue Res 364:489–497

    Article  CAS  PubMed  Google Scholar 

  • Roth KA, Gordon JI (1990) Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice. Proc Natl Acad Sci U S A 87:6408–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Säfsten B, Sjöblom M, Flemström G (2006) Serotonin increases protective duodenal bicarbonate secretion via enteric ganglia and a 5-HT4-dependent pathway. Scand J Gastroenterol 41:1279–1289

    Article  PubMed  CAS  Google Scholar 

  • Sah RP, Nagpal SJS, Mukhopadhyay D, Chari ST (2013) New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol 10:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanger GJ, Furness JB (2016) Ghrelin and motilin receptors as drug targets for gastrointestinal disorders. Nat Rev Gastroenterol Hepatol 19:38–48

    Article  CAS  Google Scholar 

  • Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, Tache Y, Scachs G, Lambrecht NWG (2009) Identification and characterization of Nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150:232–238

    Article  CAS  PubMed  Google Scholar 

  • Svendsen B, Pais R, Engelstoft MS, Milev NB, Richards P, Christiansen CB, Egerod KL, Jensen SM, Habib AM, Gribble FM, Schwartz TW, Reimann F, Holst JJ (2016) GLP1- and GIP-producing cells rarely overlap and differ by bombesin receptor-2 expression and responsiveness. J Endocrinol 228:39–48

    Article  CAS  PubMed  Google Scholar 

  • Sykaras AG, Demenis C, Cheng L, Pisitkun T, Mclaughlin JT, Fenton RA, Smith CP (2014) Duodenal CCK cells from male mice express multiple hormones including ghrelin. Endocrinology 155:3339–3351

    Article  PubMed  CAS  Google Scholar 

  • Tack J, Depoortere I, Bisschops R, Delporte C, Coulie B, Meulemans A, Janssens J, Peeters T (2006) Influence of ghrelin on interdigestive gastrointestinal motility in humans. Gut 55:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatemoto K (1982) Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Natl Acad Sci U S A 79:2514–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K, Egan JM (2006) Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 290:E550–E559

    Article  CAS  PubMed  Google Scholar 

  • Tuo B-G, Isenberg JI (2003) Effect of 5-hydroxytryptamine on duodenal mucosal bicarbonate secretion in mice. Gastroenterology 125:805–814

    Article  CAS  PubMed  Google Scholar 

  • Wierup N, Björkqvist M, Westrӧm B, Pierzynowski S, Sundler F, Sjölund K (2007) Ghrelin and motilin are cosecreted from a prominent endocrine cell population in the small intestine. J Clin Endocrinol Metab 92:3573–3581

    Article  CAS  PubMed  Google Scholar 

  • Yanaihara N, Yanaihara C, Nagai K, Sato H, Shimizu F, Yamaguchi K, Abe K (1980) Motilin-like immunoreactivity in porcine, canine, human and rat tissues. Biomed Res 1:76–83

    Article  CAS  Google Scholar 

  • Zhang Q, Zhu Y, Zhou W, Gao L, Yuan L, Han X (2013) Serotonin receptor 2C and insulin secretion. PLoS One 8:e54250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH (SPARC) grant ID # OT2OD023847 (PI Terry Powley) to JBF. We thank Josiane Fakhry for helpful comments on the manuscript. Confocal imaging was performed at the Biological Optical Microscopy Platform, University of Melbourne.

Funding

NIH (SPARC) grant ID # OT2OD023847 (PI Terry Powley) to JBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B Furness.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Procedures were approved by the Human Research Ethics Committee of Austin Health

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary figure 1

This figure shows the counts of EEC obtained in the villi and crypts of human jejunum. The numbers are similar in the two regions, except for ghrelin and secretin, which were fewer in the crypts. c = crypts, v = villi. (PNG 432 kb)

High resolution image (TIF 1793 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazio Coles, T.E., Fothergill, L.J., Hunne, B. et al. Quantitation and chemical coding of enteroendocrine cell populations in the human jejunum. Cell Tissue Res 379, 109–120 (2020). https://doi.org/10.1007/s00441-019-03099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03099-3

Keywords

Navigation