Skip to main content
Log in

Lack of CD34 produces defects in platelets, microparticles, and lung inflammation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Lung innate immune activation results in acute lung inflammation, which is characterized by alveolar barrier disruption and accumulation of cellular lung aggregates comprising neutrophils, platelets, mononuclear cells, and microparticles. CD34 is a sialomucin, with pan-selectin affinity and recently shown to protect the endothelial barrier in a bleomycin-induced lung injury model. However, there is very little information about the fundamental role of CD34 in regulation of the lung innate immune response. We hypothesized that CD34 regulates leukocyte recruitment by promoting optimal platelet activation (aggregation and spread) during bacterial lipopolysaccharide (LPS)-induced acute lung injury. Therefore, we utilized CD34 knock-out (KO) and wild-type (WT) mice to analyze and compare the morphology and expression of leukocyte subsets from the pulmonary and systemic compartments. We utilized the chemotactic N-formylated tri-peptide, fMLP, to understand platelet aggregation in vitro, and the fundamental immune stimulant, LPS, to induce lung injury and understand platelet activation ex vivo. Our data reveal that under steady-state conditions, KO mice possess large aggregates of integrin β3 (CD61)-positive microparticles in peripheral blood. Moreover, the KO mice recruit a large number of neutrophils to lungs, which are not cleared even at 36-h post-LPS exposure. The KO mice display an increased platelet CD61 expression, which aggregates, but does not spread normally in response to in vitro fMLP treatment. The KO platelets display similar deficits in their spreading ability even after ex vivo LPS exposure. Thus, our data demonstrate that CD34 modulates platelet biology, microparticle aggregation, and neutrophil recruitment during murine lung inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AbuSamra DB, Aleisa FA, Al-Amoodi AS, Jalal Ahmed HM, Chin CJ, Abuelela AF, Bergam P, Sougrat R, Merzaban JS (2017) Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv 1:2799–2816

    Article  CAS  Google Scholar 

  • Alfaro LA, Dick SA, Siegel AL, Anonuevo AS, McNagny KM, Megeney LA, Cornelison DD, Rossi FM (2011) CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells (Dayton, Ohio) 29:2030–2041

    Article  CAS  Google Scholar 

  • Angelillo-Scherrer A (2012) Leukocyte-derived microparticles in vascular homeostasis. Circ Res 110:356–369

    Article  CAS  Google Scholar 

  • Aras O, Shet A, Bach RR, Hysjulien JL, Slungaard A, Hebbel RP, Escolar G, Jilma B, Key NS (2004) Induction of microparticle- and cell-associated intravascular tissue factor in human endotoxemia. Blood 103:4545–4553

    Article  CAS  Google Scholar 

  • Aulakh GK (2018) Neutrophils in the lung: “the first responders”. Cell Tissue Res 371:577–588

    Article  CAS  Google Scholar 

  • Aulakh GK, Suri SS, Singh B (2014) Angiostatin inhibits acute lung injury in a mouse model. Am J Physiol Lung Cell Mol Physiol 306:L58–L68

    Article  CAS  Google Scholar 

  • Baumheter S, Singer MS, Henzel W, Hemmerich S, Renz M, Rosen SD, Lasky LA (1993) Binding of L-selectin to the vascular sialomucin CD34. Science (New York, NY) 262:436–438

    Article  CAS  Google Scholar 

  • Bennett JS (2005) Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 115:3363–3369

    Article  CAS  Google Scholar 

  • Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:635–648

    Article  CAS  Google Scholar 

  • Bunch TA (2010) Integrin alphaIIbbeta3 activation in Chinese hamster ovary cells and platelets increases clustering rather than affinity. J Biol Chem 285:1841–1849

    Article  CAS  Google Scholar 

  • Cheng J, Baumhueter S, Cacalano G, Carver-Moore K, Thibodeaux H, Thomas R, Broxmeyer HE, Cooper S, Hague N, Moore M, Lasky LA (1996) Hematopoietic defects in mice lacking the sialomucin CD34. Blood 87:479–490

    Article  CAS  Google Scholar 

  • Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol (Baltimore, Md : 1950) 133:157–165

    CAS  Google Scholar 

  • Delia D, Lampugnani MG, Resnati M, Dejana E, Aiello A, Fontanella E, Soligo D, Pierotti MA, Greaves MF (1993) CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood 81:1001–1008

    Article  CAS  Google Scholar 

  • Du XP, Plow EF, Frelinger AL 3rd, O’Toole TE, Loftus JC, Ginsberg MH (1991) Ligands “activate” integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell 65:409–416

    Article  CAS  Google Scholar 

  • Felschow DM, McVeigh ML, Hoehn GT, Civin CI, Fackler MJ (2001) The adapter protein CrkL associates with CD34. Blood 97:3768–3775

    Article  CAS  Google Scholar 

  • Fiedler U, Christian S, Koidl S, Kerjaschki D, Emmett MS, Bates DO, Christofori G, Augustin HG (2006) The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors. Am J Pathol 168:1045–1053

    Article  CAS  Google Scholar 

  • Grommes J, Alard JE, Drechsler M, Wantha S, Morgelin M, Kuebler WM, Jacobs M, von Hundelshausen P, Markart P, Wygrecka M, Preissner KT, Hackeng TM, Koenen RR, Weber C, Soehnlein O (2012) Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am J Respir Crit Care Med 185:628–636

    Article  CAS  Google Scholar 

  • Guo Y, Patil NK, Luan L, Bohannon JK, Sherwood ER (2018) The biology of natural killer cells during sepsis. Immunology 153:190–202

    Article  CAS  Google Scholar 

  • Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS (2009) Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med 15:384–391

    Article  CAS  Google Scholar 

  • Koupenova M, Clancy L, Corkrey HA, Freedman JE (2018) Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 122:337–351

    Article  CAS  Google Scholar 

  • Krause DS, Ito T, Fackler MJ, Smith OM, Collector MI, Sharkis SJ, May WS (1994) Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood 84:691–701

    Article  CAS  Google Scholar 

  • Lewandowska K, Kaplan D, Husel W (2003) CD34 expression on platelets. Platelets 14:83–87

    Article  Google Scholar 

  • Lin CS, Ning H, Lin G, Lue TF (2012) Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy 14:1159–1163

    Article  CAS  Google Scholar 

  • Liu F, Gamez G, Myers DR, Clemmons W, Lam WA, Jobe SM (2013) Mitochondrially mediated integrin alphaIIbbeta3 protein inactivation limits thrombus growth. J Biol Chem 288:30672–30681

    Article  CAS  Google Scholar 

  • Lo BC, Gold MJ, Scheer S, Hughes MR, Cait J, Debruin E, Chu FSF, Walker DC, Soliman H, Rossi FM, Blanchet MR, Perona-Wright G, Zaph C, McNagny KM (2017) Loss of vascular CD34 results in increased sensitivity to lung injury. Am J Respir Cell Mol Biol 57:651–661

    Article  CAS  Google Scholar 

  • Matsumoto H, Yamakawa K, Ogura H, Koh T, Matsumoto N, Shimazu T (2015) Enhanced expression of cell-specific surface antigens on endothelial microparticles in sepsis-induced disseminated intravascular coagulation. Shock (Augusta, Ga) 43:443–449

    Article  CAS  Google Scholar 

  • Meyer dos Santos S, Klinkhardt U, Scholich K, Nelson K, Monsefi N, Deckmyn H, Kuczka K, Zorn A, Harder S (2011) The CX3C chemokine fractalkine mediates platelet adhesion via the von Willebrand receptor glycoprotein Ib. Blood 117:4999–5008

    Article  CAS  Google Scholar 

  • Middleton EA, Weyrich AS, Zimmerman GA (2016) Platelets in pulmonary immune responses and inflammatory lung diseases. Physiol Rev 96:1211–1259

    Article  CAS  Google Scholar 

  • Middleton EA, Rondina MT, Schwertz H, Zimmerman GA (2018) Amicus or adversary revisited: platelets in acute lung injury and acute respiratory distress syndrome. Am J Respir Cell Mol Biol 59:18–35

    Article  CAS  Google Scholar 

  • Nakayama H, Enzan H, Miyazaki E, Kuroda N, Naruse K, Hiroi M (2000) Differential expression of CD34 in normal colorectal tissue, peritumoral inflammatory tissue, and tumour stroma. J Clin Pathol 53:626–629

    Article  CAS  Google Scholar 

  • Nielsen JS, McNagny KM (2008) Novel functions of the CD34 family. J Cell Sci 121:3683–3692

    Article  CAS  Google Scholar 

  • Norton J, Sloane JP, Delia D, Greaves MF (1993) Reciprocal expression of CD34 and cell adhesion molecule ELAM-1 on vascular endothelium in acute cutaneous graft-versus-host disease. J Pathol 170:173–177

    Article  CAS  Google Scholar 

  • Ohnishi H, Sasaki H, Nakamura Y, Kato S, Ando K, Narimatsu H, Tachibana K (2013) Regulation of cell shape and adhesion by CD34. Cell Adhes Migr 7:426–433

    Article  Google Scholar 

  • Rainger GE, Buckley C, Simmons DL, Nash GB (1998) Neutrophils rolling on immobilised platelets migrate into homotypic aggregates after activation. Thromb Haemost 79:1177–1183

    Article  CAS  Google Scholar 

  • Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297

    Article  CAS  Google Scholar 

  • Schafer A, Schulz C, Eigenthaler M, Fraccarollo D, Kobsar A, Gawaz M, Ertl G, Walter U, Bauersachs J (2004) Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion. Blood 103:407–412

    Article  CAS  Google Scholar 

  • Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A (2014) Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells (Dayton, Ohio) 32:1380–1389

    Article  CAS  Google Scholar 

  • Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE (1996) Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 88:907–914

    Article  CAS  Google Scholar 

  • Yan X, Hegab AE, Endo J, Anzai A, Matsuhashi T, Katsumata Y, Ito K, Yamamoto T, Betsuyaku T, Shinmura K, Shen W, Vivier E, Fukuda K, Sano M (2014) Lung natural killer cells play a major counter-regulatory role in pulmonary vascular hyperpermeability after myocardial infarction. Circ Res 114:637–649

    Article  CAS  Google Scholar 

  • Zamarron C, Ginsberg MH, Plow EF (1991) A receptor-induced binding site in fibrinogen elicited by its interaction with platelet membrane glycoprotein IIb-IIIa. J Biol Chem 266:16193–16199

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support by Dr. Baljit Singh for providing access to CD34 KO colony for further exploration of the innate immune mechanisms of CD34.

Funding

The research conducted is funded by start-up research funds from the Sylvia Fedoruk Canadian Center for Nuclear Innovation. The Sylvia Fedoruk Canadian Center for Nuclear Innovation is funded by Innovation Saskatchewan. Fluorescence imaging was performed at the WCVM Imaging Centre, which is funded by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Kaur Aulakh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study design was approved by the University of Saskatchewan’s Animal Research Ethics Board (AUP 20150018) and adhered to the Canadian Council on Animal Care guidelines for humane animal use.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aulakh, G.K. Lack of CD34 produces defects in platelets, microparticles, and lung inflammation. Cell Tissue Res 382, 405–419 (2020). https://doi.org/10.1007/s00441-020-03243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03243-4

Keywords

Navigation