Skip to main content
Log in

The identification of neuronal control pathways supplying effector tissues in the stomach

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The stomach acts as a buffer between the ingestion of food and its processing in the small intestine. It signals to the brain to modulate food intake and it in turn regulates the passage of a nutrient-rich fluid, containing partly digested food, into the duodenum. These processes need to be finely controlled, for example to restrict reflux into the esophagus and to transfer digesta to the duodenum at an appropriate rate. Thus, the efferent pathways that control gastric volume, gastric peristalsis and digestive juice production are critically important. We review these pathways with an emphasis on the identities of the final motor neurons and comparisons between species. The major types of motor neurons arising from gastric enteric ganglia are as follows: immunohistochemically distinguishable excitatory and inhibitory muscle motor neurons; four neuron types innervating mucosal effectors (parietal cells, chief cells, gastrin cells and somatostatin cells); and vasodilator neurons. Sympathetic efferent neurons innervate intramural arteries, myenteric ganglia and gastric muscle. Vagal efferent neurons with cell bodies in the brain stem do not directly innervate gastric effector tissues; they are pre-enteric neurons that innervate each type of gastric enteric motor neuron. The principal transmitters and co-transmitters of gastric motor neurons, as well as key immunohistochemical markers, are the same in rat, pig, human and other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

ChAT:

Choline acetyltransferase

DBH:

Dopamine beta-hydroxylase

ENK:

Enkephalin

GRP:

Gastrin-releasing peptide

IR:

Immunoreactive

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NPY:

Neuropeptide Y

PACAP:

Pituitary adenyl cyclase activating peptide

PHI:

Peptide histidine isoleucine

TH:

Tyrosine hydroxylase

TK:

Tachykinin (these neurons produce a range of pharmacologically similar tachykinins, substance P, neurokinin A, and neuropeptide K)

VAChT:

Vesicular acetylcholine transporter

VIP:

Vasoactive intestinal peptide

References

  • Andrews PLR, Grundy D, Scratcherd T (1980) Reflex excitation of antral motility induced by gastric distension in the ferret. J Physiol (Lond) 298:79–84

    CAS  Google Scholar 

  • Anetsberger D, Kürten S, Jabari S, Brehmer A (2018) Morphological and immunohistochemical characterization of human intrinsic gastric neurons. Cells Tissues Organs 206:183–195

    CAS  PubMed  Google Scholar 

  • Brookes SJH, Hennig G, Schemann M (1998) Identification of motor neurons to the circular muscle of the guinea pig gastric corpus. J Comp Neurol 397:268–280

    CAS  PubMed  Google Scholar 

  • Cannon WB (1898) The movements of the stomach studied by means of the Roentgen rays. Am J Physiol 1:359–382

    Google Scholar 

  • Cannon WB, Lieb CW (1911) The receptive relaxation of the stomach. Am J Physiol 29:267–273

    Google Scholar 

  • Debas HT, Konturek SJ, Walsh JH, Grossman MI (1974) Proof of a pyloro-oxyntic reflex for stimulation of acid secretion. Gastroenterology 66:526–532

    CAS  PubMed  Google Scholar 

  • Ekblad E, Ekelund M, Graffner H, Håkanson R, Sundler F (1985) Peptide-containing nerve fibres in the stomach wall of rat and mouse. Gastroenterology 89:73–85

    CAS  PubMed  Google Scholar 

  • Ekblad E, Mei Q, Sundler F (2000) Innervation of the gastric mucosa. Microsc Res Tech 48:241–257

    CAS  PubMed  Google Scholar 

  • Engelstoft MS, Park W-M, Sakata I, Kristensen LV, Husted AS, Osborne-Lawrence S, Piper PK, Walker AK, Pedersen MH, Nøhr MK, Pan J, Sinz CJ, Carrington PE, Akiyama TE, Jones RM, Tang C, Ahmed K, Offermanns S, Egerod KL, Zigman JM, Schwartz TW (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol Metab 2:376–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fakhry J, Stebbing MJ, Hunne B, Bayguinov Y, Ward SM, Sasse KC, Callaghan B, McQuade RM, Furness JB (2019) Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res 376:37–49

    CAS  Google Scholar 

  • Farooq O, Walsh JH (1975) Atropine enhances serum gastrin response to insulin in man. Gastroenterology 68:662–666

    CAS  PubMed  Google Scholar 

  • Feldman M, Dickerman RM, McClelland RN, Cooper KA, Walsh JH, Richardson CT (1979) Effect of selective proximal vagotomy on food-stimulated gastric acid secretion and gastrin release in patients with duodenal ulcer. Gastroenterology 76:926–931

    CAS  PubMed  Google Scholar 

  • Feldman M, Richardson CT, Taylor IL, Walsh JH (1979) Effect of atropine on vagal release of gastrin and pancreatic polypeptide. J Clin Invest 63:294–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filogamo G, Gabella G (1970) Effects of extrinsic denervation on the synapses of myenteric plexus. J Microscopie 9:281–284

    Google Scholar 

  • Fiorucci S, McArthur KE (1990) Gastrin-releasing peptide directly releases pepsinogen from guinea pig chief cells. Am J Physiol 259:G760–G766

    CAS  PubMed  Google Scholar 

  • Fothergill LJ, Galiazzo G, Hunne B, Stebbing MJ, Fakhry J, Weissenborn F, Fazio Coles TE, Furness JB (2019) Distribution and co-expression patterns of specific cell markers of enteroendocrine cells in pig gastric epithelium. Cell Tissue Res 378:457–469

    CAS  PubMed  Google Scholar 

  • Furness JB (1971) The adrenergic innervation of the vessels supplying and draining the gastrointestinal tract. Z Zellforsch 113:67–82

    CAS  PubMed  Google Scholar 

  • Furness JB (2006) The enteric nervous system. Blackwell, Oxford

    Google Scholar 

  • Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294

    CAS  PubMed  Google Scholar 

  • Furness JB, Jones C, Nurgali K, Clerc N (2004) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    CAS  PubMed  Google Scholar 

  • Furness JB, Lloyd KCK, Sternini C, Walsh JH (1991) Evidence that myenteric neurons of the gastric corpus project to both the mucosa and the external muscle: myectomy operations on the canine stomach. Cell Tissue Res 266:475–481

    CAS  PubMed  Google Scholar 

  • Grossman MI (1962) Secretion of acid and pepsin in response to distension of vagally innervated fundic gland area in dogs. Gastroenterology 42:716–721

    Google Scholar 

  • Grotzmyer U, Bergegard S, Olbe L (1977) Effect of atropine and proximal gastric vagotomy on the acid response to fundic distension in man. Gut 18:303

    Google Scholar 

  • Grundy D, Schemann M (2002) Motor control of the stomach. In: Brookes S, Costa M (eds) Innervation of the gastrointestinal tract. Taylor & Francis, London & New York, p 57–102

  • Harper AA, Kidd C, Scratcherd T (1959) Vago-vagal reflex effects on gastric and pancreatic secretion and gastro-intestinal motility. J Physiol (Lond) 148:417–436

    CAS  Google Scholar 

  • Hind A, Migliori M, Thacker M, Staikopoulos V, Nurgali K, Chiocchetti R, Furness JB (2005) Primary afferent neurons intrinsic to the intestine, like primary afferent neurons of spinal and cranial sensory ganglia, bind the lectin, IB4. Cell Tissue Res 321:151–157

    PubMed  Google Scholar 

  • Holst JJ, Knuhtsen S, Orskov C, Skak-Nielsen T, Poulsen SS, Jensen SL, Nielsen OV (1987) GRP nerves in pig antrum: role of GRP in vagal control of gastrin secretion. Am J Physiol 253:G643–G649

    CAS  PubMed  Google Scholar 

  • Holst MC, Kelly JB, Powley TL (1997) Vagal preganglionic projections to the enteric nervous system characterized with phaseolus vulgaris-leucoagglutinin. J Comp Neurol 381:81–100

    CAS  PubMed  Google Scholar 

  • Hunne B, Stebbing MJ, McQuade RM, Furness JB (2019) Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell Tissue Res 378:33–48

    PubMed  PubMed Central  Google Scholar 

  • Ito S, Ohga A, Ohta T (1988) Gastric relaxation and vasoactive intestinal peptide output in response to reflex vagal stimulation in the dog. J Physiol (Lond) 404:683–693

    CAS  Google Scholar 

  • Jansson G, Lisander B (1969) On adrenergic influence on gastric motility in chronically vagotomized cats. Acta Physiol Scand 76:463–471

    CAS  PubMed  Google Scholar 

  • Jansson G, Martinson J (1966) Studies on the ganglionic site of action of sympathetic outflow to the stomach. Acta Physiol Scand 68:184–192

    CAS  Google Scholar 

  • Kelly KA (1980) Gastric emptying of liquids and solids: roles of proximal and distal stomach. Am J Physiol 239:G71–G76

    CAS  PubMed  Google Scholar 

  • Kelly KA (1981) Motility of the stomach and gastroduodenal junction. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 393–410

    Google Scholar 

  • Knutson U, Olbe L (1974) The effect of exogenous gastrin on the acid sham feeding response in antrum-bulb-resected duodenal ulcer patients. Scand J Gastroenterol 9:231–238

    CAS  PubMed  Google Scholar 

  • Koop H, Behrens I, Bothe E, McIntosh CHS, Pederson RA, Arnold R, Creutzfeldt W (1982) Adrenergic and cholinergic interactions in rat gastric somatostatin and gastrin release. Digestion 25:96–102

    CAS  PubMed  Google Scholar 

  • Kupari J, Rossi J, Herzig K-H, Airaksinen MS (2013) Lack of cholinergic innervation in gastric mucosa does not affect gastrin secretion or basal acid output in neurturin receptor GFRα2 deficient mice. J Physiol 591:2175–2188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson LI, Goltermann N, De Magistris L, Rehfeld JF, Schwarz TW (1979) Somatostatin cell processess as pathways for paracrine secretion. Science 205:1393–1395

    CAS  PubMed  Google Scholar 

  • Lawrentjew BJ (1931) Zur Lehre von der Cytoarchitektonik des peripheren autonomen Nervensystems. 1. Die Cytoarchitektonik der Ganglien des Verdauungskanals beim Hunde. Z Mikrosk Anat Forsch 23:527–551

    Google Scholar 

  • Mawe GM, Schemann M, Wood JD, Gershon MD (1989) Immunocyctochemical analysis of potential neurotransmitters present in the myenteric plexus and muscular layers of the corpus of the guinea pig stomach. Anat Rec 224:431–442

    CAS  PubMed  Google Scholar 

  • Mazzuoli-Weber G, Schemann M (2015) Mechanosensitive enteric neurons in the guinea pig gastric corpus. Front Cellular Neurosci 9:430

    Google Scholar 

  • Mazzuoli G, Schemann M (2009) Multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the myenteric plexus of the guinea pig ileum. J Physiol (Lond) 587:4681–4693

    CAS  Google Scholar 

  • Mazzuoli G, Schemann M (2012) Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS ONE 7:e39887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JH, Thomson JB, Cohen MB, Shadchehr A, Mandiola SA (1979) Sieving of solid food by the canine stomach and sieving after gastric surgery. Gastroenterology 76:804–813

    CAS  PubMed  Google Scholar 

  • Michel K, Reiche D, Schemann M (2000) Projections and neurochemical coding of motor neurones to the circular and longitudinal muscle of the guinea pig gastric corpus. Eur J Physiol 440:393–408

    CAS  Google Scholar 

  • Miller AS, Furness JB, Costa M (1989) The relationship between gastrin cells and bombesin-like immunoreactive nerve fibres in the gastric antral mucosa of guinea-pig, rat, dog and man. Cell Tissue Res 257:171–178

    CAS  PubMed  Google Scholar 

  • Nilsson G, Simon J, Yalow RS, Berson SA (1972) Plasma gastrin and gastric acid responses to sham feeding and feeding in dogs. Gastroenterology 63:51–59

    CAS  PubMed  Google Scholar 

  • Nishi SH, Seino YU, Takemura JI, Ishida HI, Seno MI, Chiba TS, Yanaihara CH, Yanaihara NO, Imura HI (1985) Vagal regulation of GRP, gastric somatostatin, and gastrin secretion in vitro. Am J Physiol-Endoc Metabol 248:E425–E431

    CAS  Google Scholar 

  • Norlén P, Ericsson P, Kitano M, Ekelund M, Håkanson R (2005) The vagus regulates histamine mobilization from rat stomach ECL cells by controlling their sensitivity to gastrin. J Physiol 564:895–905

    PubMed  PubMed Central  Google Scholar 

  • O’Grady G, Du P, Cheng LK, Egbuji JU, Lammers WJEP, Windsor JA, Pullan AJ (2010) Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. Am J Physiol Gastrointest Liver Physiol 299:G585–G592

    PubMed  PubMed Central  Google Scholar 

  • Olbe L (1964) Potentiation of sham feeding response in Pavlov pouch dogs by subthreshold amounts of gastrin with and without acidification of denervated antrum. Acta Physiol Scand 61:244–254

    CAS  PubMed  Google Scholar 

  • Pfannkuche H, Firzlaff U, Sann H, Reiche D, Schemann M (2000) Neurochemical coding and projection patterns of gastrin-releasing peptide-immunoreactive myenteric neurone subpopulations in the guinea-pig gastric fundus. J Chem Neuroanat 19:93–104

    CAS  PubMed  Google Scholar 

  • Pfannkuche H, Reiche D, Sann H, Schemann M (1998) Different subpopulations of cholinergic and nitrergic myenteric neurones project to mucosa and circular muscle of the guinea-pig gastric fundus. Cell Tissue Res 292:463–475

    CAS  PubMed  Google Scholar 

  • Pimont S, Bruley Des Varannes S, Le Neel JC, Aubert P, Galmiche JP, Neunlist M (2003) Neurochemical coding of myenteric neurones in the human gastric fundus. Neurogastroenterol Motil 15:655–662

    CAS  PubMed  Google Scholar 

  • Schapiro H, Woodward ER (1955) Inhibition of gastric motility by acid in the duodenum. J Appl Physiol 8:121–127

    CAS  PubMed  Google Scholar 

  • Schapiro H, Woodward ER (1959) Pathway of enterogastric reflex. Proc Soc Exp Biol Med 101:407–409

    CAS  PubMed  Google Scholar 

  • Schemann M, Grundy D (1992) Electrophysiological identification of vagally innervated enteric neurons in guinea pig stomach. Am J Physiol 263:G709–G718

    CAS  PubMed  Google Scholar 

  • Schemann M, Reiche D, Michel K (2001) Enteric pathways in the stomach. Anat Rec 262:47–57

    CAS  PubMed  Google Scholar 

  • Schemann M, Schaaf C (1995) Differential projection of cholinergic and nitroxidergic neurons in the myenteric plexus of guinea pig stomach. Am J Physiol 269:G186–G195

    CAS  PubMed  Google Scholar 

  • Schemann M, Wood JD (1989) Electrical behaviour of myenteric neurones in the gastric corpus of the guinea-pig. J Physiol (Lond) 417:501–518

    CAS  Google Scholar 

  • Schiller LR, Walsh JH, Feldman M (1980) Distention-induced gastrin release. Effects of luminal acidification and intravenous atropine. Gastroenterology 78:912–917

    CAS  PubMed  Google Scholar 

  • Schubert ML, Bitar KN, Makhlouf GM (1982) Regulation of gastrin and somatostatin secretion by cholinergic and noncholinergic intramural neurons. Am J Physiol Gastrointest Liver Physiol 243:G442–G447

    CAS  Google Scholar 

  • Schubert ML, Saffouri B, Makhlouf GM (1985) Inhibition of neurally-mediated gastrin secretion by bombesin antiserum. Am J Physiol 248:G456–G462

    CAS  PubMed  Google Scholar 

  • Semba T (1954) Studies on the entero-gastric reflexes. Hiroshima J Med Sci 2:323–327

    Google Scholar 

  • Seymour NE, Andersen DK (1999) Surgery for peptic ulcer disease and postgastrectomy syndromes. In: Yamada T, Alpers DH, Laine L, Owyang C, Powell DW (eds) Textbook of Gastroenterology, vol 1. Lippincott Williams & Wilkins, Philadelphia, PA, p 1530-1548

  • Sjövall M, Ekblad E, Lundell L, Sundler F (1990) Gastrin-releasing peptide: neuronal distribution and spatial relation to endocrine cells in the human upper gut. Regul Pept 28:47–55

    PubMed  Google Scholar 

  • Skak-Nielsen T, Holst JJ, Nielsen OV (1988) Role of gastrin-releasing peptide in the neural control of pepsinogen secretion from the pig stomach. Gastroenterology 95:1216–1220

    CAS  PubMed  Google Scholar 

  • Smith VC, Dhatt N, Buchan AMJ (2001) The innervation of the human antro-pyloric region: organization and composition. Can J Physiol Pharmacol 79:905–918

    CAS  PubMed  Google Scholar 

  • Soll AH, Walsh JH (1979) Regulation of gastric acid secretion. Annu Rev Physiol 41:35–53

    CAS  PubMed  Google Scholar 

  • Spencer NJ, Smith TK (2004) Mechanosensory S-neurons rather than AH-neurons appear to generate a rhythmic motor pattern in guinea-pig distal colon. J Physiol (Lond) 558(2):577–596

    CAS  Google Scholar 

  • Tack JF, Wood JD (1992) Electrical behaviour of myenteric neurones in the gastric antrum of the guinea-pig. J Physiol (Lond) 447:49–66

    CAS  Google Scholar 

  • Thacker M, Zhang FL, Jungnickel SR, Furness JB (2006) Binding of isolectin IB4 to neurons of the mouse enteric nervous system. J Mol Hist 37:61–68

    CAS  Google Scholar 

  • Thiefin G, Taché Y, Leung FW, Guth PH (1989) Central nervous system action of thyrotropin-releasing hormone to increase gastric mucosal blood flow in the rat. Gastroenterology 97:405–411

    CAS  PubMed  Google Scholar 

  • Tonini M, De Giorgio R, De Ponti F, Sternini C, Spelta V, Dionigi P, Barbara G, Stanghellini V, Corinaldesi R (2000) Role of nitric oxide- and vasoactive intestinal polypeptide-containing neurones in human gastric fundus strip relaxations. Br J Pharmacol 129:12–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uvnäs Wallensten K, Andersson H (1977) Effect of atropine and metiamide on vagally induced gastric acid secretion and gastrin release in anesthetized cats. Acta Physiol Scand 99:496–502

    PubMed  Google Scholar 

  • Van Nassauw L, Wu M, De Jonge F, Adriaensen D, Timmermans J-P (2005) Cytoplasmic, but not nuclear, expression of the neuronal nuclei (NeuN) antibody is an exclusive feature of Dogiel type II neurons in the guinea-pig gastrointestinal tract. Histochem Cell Biol 124:369–377

    PubMed  Google Scholar 

  • Walter GC, Phillips RJ, McAdams JL, Powley TL (2016) Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat. J Comp Neurol 524:2577–2603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YB, de Lartigue G, Page AJ (2020) Dissecting the role of subtypes of gastrointestinal vagal afferents. Front Physiol 11:643

    PubMed  PubMed Central  Google Scholar 

  • Weigert N, Li YY, Schick RR, Coy DH, Classen M, Schusdziarra V (1997) Role of vagal fibers and bombesin/gastrin-releasing peptide-neurons in distension-induced gastrin release in rats. Regul Pept 69:33–40

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Confocal imaging was performed at the Biological Optical Microscopy Platform, University of Melbourne.

Funding

This work was supported by NIH (SPARC) grant ID no. OT2OD023847 (PIs TLP and JBF). LO is the recipient of a Swiss National Science Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Furness.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Procedures were approved by the University of Melbourne Animal Ethics Committee (ethics approval numbers 1614002 and 191479). All applicable National and Institutional guidelines for the care and use of animals were followed.

Informed consent

None required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furness, J.B., Di Natale, M., Hunne, B. et al. The identification of neuronal control pathways supplying effector tissues in the stomach. Cell Tissue Res 382, 433–445 (2020). https://doi.org/10.1007/s00441-020-03294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03294-7

Keywords

Navigation