Skip to main content
Log in

Morphologies and distributions of 5-HT containing enteroendocrine cells in the mouse large intestine

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Serotonin (5-HT)-containing gastrointestinal endocrine cells contribute to regulation of numerous bodily functions, but whether these functions are related to differences in cell shape is not known. The current study identified morphologies and localization of subtypes of 5-HT-containing enteroendocrine cells in the mouse large intestine. 5-HT cells were most frequent in the proximal colon compared with cecum and distal colon. The large intestine harbored both open (O) cells, with apical processes that reached the lumen, and closed (C) cells, not contacting the lumen, classified into O1, O2, and O3 and C1, C2, and C3 cells, by the lengths of their basal processes. O1 and C1 cells, with basal processes sometimes longer that 100 µm, were most common in the distal colon. Their long basal processes ran against the inner surfaces of the mucosal epithelial cells and were strongly immunoreactive for 5-HT; these processes are ideally placed to communicate with the epithelium and to react to mechanical forces. O2 and C2 cells that had similar but shorter basal processes were also most common in the distal colon. O3 and C3 cells had no or very short basal processes. The O3 open type 5-HT cells were abundant in the proximal colon, particularly at the luminal surface, where they could release 5-HT into the lumen to act on luminal 5-HT receptors. Numerous O3 type 5-HT cells occurred in the lower (submucosal) region of the crypts in all segments and might release 5-HT to influence cell renewal in the crypt proliferative zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2.
Fig. 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR, Linden DR, Li JH, Leiter AB, Szurszewski JH, Farrugia G, Beyder A (2018) A population of gut epithelial enterochromaffin cells is mechanosensitive and required Piezo2 to convert force into serotonin release. PNAS 115:E7632–E7641

    Article  CAS  PubMed  Google Scholar 

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billing LJ, Larraufie P, Lewis J, Leiter A, Li J, Lam B, Yeo GS, Goldspink DA, Kay RG, Gribble FM, Reimann F (2019) Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice–identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol metab 29:158–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohórquez DV, Chandra R, Samsa LA, Vigna SR, Liddle RA (2011) Characterization of basal pseudopod-like processes in ileal and colonic PYY cells. J Mol Hist 42:3–13

    Article  Google Scholar 

  • Bülbring E, Crema A (1958) Observations concerning the action of 5-hydroxytryptamine on the peristaltic reflex. Br J Pharmacol 13:444–457

    Google Scholar 

  • Bülbring E, Lin RCY (1958) The effect of intraluminal application of 5-hydroxytryptamine and 5-hydroxytryptophan on peristalsis; the local production of 5-HT and its release in relation to intraluminal pressure and propulsive activity. J Physiol (Lond) 140:381–407

    Google Scholar 

  • Cooke HJ, Carey HV (1985) Pharmacological analysis of 5-hydroxytryptamine actions on guinea-pig ileal mucosa. Eur J Pharmacol 111:329–337

    Article  CAS  PubMed  Google Scholar 

  • Cox HM (2016) Neuroendocrine peptide mechanisms controlling intestinal epithelial function. Curr Opin Pharmacol 31:50–56

    Article  CAS  PubMed  Google Scholar 

  • Day J, King B, Haque SM, Kellum JM (2005) A nonneuronal 5-hydroxytryptamine receptor 3 induces chloride secretion in the rat distal colon mucosa. Am J Surg 190:736–738

    Article  CAS  PubMed  Google Scholar 

  • de Bruine AP, Dinjens WNM, Zijlema JHL, Lenders M-H, Bosman FT (1992) Renewal of enterochromaffin cells in the rat caecum. Anat Rec 233:75–82

    Article  PubMed  Google Scholar 

  • Diwakarla S, Fothergill LJ, Fakhry J, Callaghan B, Furness JB (2017) Heterogeneity of enterochromaffin cells within the gastrointestinal tract. Neurogastroenterol Motil 29:e13101

    Article  Google Scholar 

  • Fakhry J, Stebbing MJ, Hunne B, Bayguinov Y, Ward SM, Casse KC, Callaghan B, McQuade RM, Furness JB (2019) Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res 376:37–49

    Article  CAS  PubMed  Google Scholar 

  • Fazio Coles TE, Fothergill LJ, Hunne B, Nikfarjam M, Testro A, Callaghan B, McQuade RM, Furness JB (2020) Quantitation and chemical coding of enteroendocrine cell populations in the human jejunum. Cell Tissue Res 379:109–120

    Article  CAS  PubMed  Google Scholar 

  • Ferrara A, Zinner MJ, Jaffe BM (1987) Intraluminal release of serotonin, substance P, and gastrin in the canine small intestine. Dig Dis Sci 32:289–294

    Article  CAS  PubMed  Google Scholar 

  • Fujimiya M, Okumiya K, Kuwahara A (1997) Immunoelectron microscopic study of the luminal release of serotonin from rat enterochromaffin cells induced by high intraluminal pressure. Histochem Cell Biol 108:105–113

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Kobayashi S (1971) Experimental induced granule release in the endocrine cells of dog pyloric antrum. Z Zellforsh 116:52–60

    Article  CAS  Google Scholar 

  • Fujita T, Kobayashi S (1973) The cells and hormones of the GEP endocrine system—the current of studies. In: Fujita T (ed) Gasro-entero-pancreatic endocrine system: a cell-biological approach. Igaku-Shoin, Tokyo, pp 1–16

    Google Scholar 

  • Fujita T, Kanno T, Kobayashi S (1988) Gastroenteropancreatic endocrine system. In: Fujita T, Kanno T, Kobayashi S (eds) The paraneuron. Springer-Verlag, Tokyo, pp 165–184

    Chapter  Google Scholar 

  • Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, Eubanks S, Harris M, Pappas TN, Takahashi T (2003) Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284:R1269–R1276

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Rivera LR, Cho H-J, Bravo DM, Callaghan B (2013) The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 10:729–740

    Article  CAS  PubMed  Google Scholar 

  • Greig CJ, Zhang L, Cowles (2019) Potentiated serotonin signaling in serotonin re-uptake transporter knockout mice increases enterocyte mass and small intestinal absorptive function. Physiol Rep 7:e14278–e14286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gribble FM, Reimann F (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol 78:277–299

    Article  CAS  PubMed  Google Scholar 

  • Grider JR, Kuemmerle JF, Jin JG (1996) 5-HT released by mucosal stimuli initiates peristalsis by activating 5-HT4/5-HT1p receptors on sensory CGRP neurons. Am J Physiol 270:G778–G782

    CAS  PubMed  Google Scholar 

  • Hansen MB, Witte A-B (2008) The role of serotonin in intestinal luminal sensing and secretion. Acta Physiol 193:311–323

    Article  CAS  Google Scholar 

  • Hunne B, Stebbing MJ, McQuade RM, Furness JB (2019) Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell Tissue Res 378:33–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaji I, Akiba Y, Said H, Narimatsu K, Kaunitz JD (2015) Luminal 5-HT stimulates colonic bicarbonate secretion in rats. Br J Pharmacol 172:4655–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellum J, McCabe M, Scheiei J, Donomitz M (1983) Neural control of acid-induced serotonin release from rabbit duodenum. Am J Physiol 245:G824–G831

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Fujita T, Sasagawa T (1971) Electron microscope studies on the endocrine cells of the human gastric fundus. Arch Histol Jpn 31:429–444

    Article  Google Scholar 

  • Kojima S, Ikeda M (1998) Facilitation by endogenous acetylcholine and nitric oxide of luminal serotonin release from the guinea-pig colon. Eur J Pharmacol 355:51–55

    Article  CAS  PubMed  Google Scholar 

  • Kuramoto H, Kadowaki M, Sakamoto H, Yuasa K, Todo A, Shirai R (2007) Distinct morphology of serotonin-containing enterochromaffin (EC) cells in the rat distal colon. Arch Histol Cytol 70:235–241

    Article  PubMed  Google Scholar 

  • Larsson LI, Goltermann N, De Magistris L, Rehfeld JF, Schwarz TW (1979) Somatostatin cell processes as pathways for paracrine secretion. Science 205:1393–1395

    Article  CAS  PubMed  Google Scholar 

  • Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, Schwartz TW (2018) Enterochromaffin 5-HT cells - a major target for GLP-1 and gut microbial metabolites. Mol Metab 11:70–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg JM, Tatemoto K, Terenius L, Hellström PM, Mutt V, Hökfelt T, Hamberger B (1982) Localization of peptide YY PYY in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc Natl Acad Sci USA 79:4471–4475

    Article  CAS  PubMed  Google Scholar 

  • Martin AM, Lumsden AL, Young RL, Jessup CF, Spencer NJ, Keating DJ (2017) The nutrient-sensing repertoires of mouse enterochromaffin cells differ between duodenum and colon. Neurogastroenterol Motil 29:e13046

    Article  Google Scholar 

  • Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, Keating DJ (2017) The diverse metabolic roles of peripheral serotonin. Endocrinology 158:1049–1063

    Article  CAS  PubMed  Google Scholar 

  • Reynaud Y, Fakhry J, Fothergill L, Callaghan B, Ringuet MT, Hunne B, Bravo DM, Furness JB (2016) The chemical coding of 5-hydroxytryptamine containing enteroendocrine cells in the mouse gastrointestinal tract. Cell Tissue Res 364:489–497

    Article  CAS  PubMed  Google Scholar 

  • Ripken D, Wielen Nvd, Wortelboer HM, Meijerink J, Witkamp RF, Hendriks HFJ (2016) Nutrient-induced glucagon like peptide-1 release is modulated by serotonin. J Nutr Bichem 32:142–150

    Article  CAS  Google Scholar 

  • Schubert ML, Peura DA (2008) Control of gastric acid secretion in health and disease. Gasroenterology 134:1842–1860

    Article  CAS  Google Scholar 

  • Spohn SN, Mawe GM (2017) Non-conventional features of peripheral serotonin signalling — the gut and beyond. Nat Rev Gastroenterol Hepatol

  • Tackett JJ, Gandotra N, Bamdad MC, Muise ED, Cowles RA (2017) Enhanced serotonin signaling stimulates ordered intestinal mucosal growth. J Surg Res 208:198–203

    Article  CAS  PubMed  Google Scholar 

  • Tackett JJ, Gandotra N, Bamdad MC, Muise ED, Cowles RA (2019) Potentiation of serotonin signaling protects against intestinal ischemia and reperfusion injury in mice. Neurogastroenterol Motil 31:e13498–e13507

    Article  PubMed  Google Scholar 

  • Tsubouchi S, Leblond CP (1979) Migration and turnover of entero-endocrine and caveated cells in the epithelium of the descending colon, as shown by radioautography after continuous infusion of 3H-thymidine into mice. Am J Anat 156:431–452

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto K, Ariga H, Mantyh C, Pappas TN, Yanagi H, Yamamura T, Takahashi T (2007) Luminally released serotonin stimulates colonic motility and accelerates colonic transit in rats. Am J Physiol 293:R64–R69

    CAS  Google Scholar 

  • Tutton PJ, Barkla DH (1986) Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas. Anticancer Res 6:1123–1126

    CAS  PubMed  Google Scholar 

  • Vialli M, Erspamer V (1933) Celluli enterocromaffini e cellule basigranulose acidofile nei vertebrati. Z Zellforsch 19:743–773

    Article  Google Scholar 

  • Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, Grover M, Oeckler R, Gottlieb PA, Li HJ, Leiter AB, Farrugia G, Beyder A (2017) Mechanosensitive ion channel piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol 595:79–91

    Article  CAS  PubMed  Google Scholar 

  • Yurchenko PD, Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4:1577–1590

    Article  Google Scholar 

  • Zachrisson K, Uribe A (1998) Serotonin and neuroendocrine peptides influence DNA synthesis in rat and human small intestinal cells in vitro. Acta Physiol Scand 163:195–200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Furness.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Ethical approval

Procedures were approved by the University of Melbourne Animal Ethics Committee (ethics approval numbers 1613817 and 1814569) and the Kyoto Institute of Technology (approval number 100154). All applicable National and Institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuramoto, H., Koo, A., Fothergill, L.J. et al. Morphologies and distributions of 5-HT containing enteroendocrine cells in the mouse large intestine. Cell Tissue Res 384, 275–286 (2021). https://doi.org/10.1007/s00441-020-03322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03322-6

Keywords

Navigation