Skip to main content
Log in

Influence of mass transfer limitations on the enzymatic synthesis of β-lactam antibiotics catalyzed by penicillin G acylase immobilized on glioxil-agarose

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Mass transfer effects were investigated for the synthesis of ampicillin and amoxicillin, at pH 6.5 and 25 °C, catalyzed by penicillin G acylase immobilized on agarose. The influence of external mass transfer was analysed using different stirring rates, ranging form 200 to 800 rpm. Above 400 rpm, the film resistance may be neglected. Intra-particle diffusion limitation was investigated using biocatalysts prepared with different enzyme loads and agarose with different mean pore diameters. When agarose with 6, 8 and 10% of crosslinking were used, for the same enzyme load, substrates and products concentration profiles presented no expressive differences, suggesting pore diameter is not important parameter. An increase on enzyme load showed that when more than 90 IU of enzyme activity were used per mL of support, the system was influenced by intra-particle mass transfer. A reactive-diffusive model was used to estimate effective diffusivities of substrates and products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bianchi D, Golini R, Bortolo R, Cesti P (1996) Immobilization of Penicillin G Acylase on Aminoalkylated Polyacrylic Supports. Enzyme Microb Technol 18:592–596

    Article  CAS  Google Scholar 

  2. Arroyo M, De la Mata I, Acebal C, Castillon MP (2003) Biotechnological applications of penicillin acylases: state of the art. Appl Microbiol Biotechnol 60:507–514

    CAS  Google Scholar 

  3. Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Kinetics of glucose oxidase immobilized in p(HEMA)-hydrogel microspheres in a packed-bed bioreactor. J Mol Catal B-Enzym 18:69–80

    Article  CAS  Google Scholar 

  4. Tischer W, Kasche V (1999) Immobilized enzymes: crystal or carriers? Tibtech 17:326–335

    CAS  Google Scholar 

  5. Fernadez-Lafuente RF, Rossel CM, Guisán JM (1995) The use of stabilised penicillin acylase derivatives improves the design of kinetically controlled synthesis. J Mol Catal A-Chem 101:91–97

    Article  Google Scholar 

  6. Gonçalves LRB, Fernadez-Lafuente R, Guisán JM, Giordano RLC (2000) A kinetic study of the synthesis of amoxicillin using penicillin G acylase immobilized on agarose. Appl Biochem Biotechnol 84–86:931–945

    Article  Google Scholar 

  7. Gonçalves LRB, Fernadez-Lafuente R, Guisán JM, Giordano RLC (2002) The role of 6-aminopenicillanic acid on the kinetics of the enzymatic synthesis of amoxicillin catalyzed by penicillin g acylase immobilized on glyoxyl-agarose. Enzyme Microb Technol 31:464–471

    Article  Google Scholar 

  8. Gonçalves LRB, Fernadez-Lafuente R, Guisán JM, Giordano RLC (2003) Inhibitory effects in the side reactions occurring during the enzymatic synthesis of amoxicillin: p-hydroxy-d-phenylglycine methyl ester and amoxicillin hydrolysis. Biotechnol Appl Biochem 38:77–85

    Article  Google Scholar 

  9. Ospina S, Barzana E, Ramırez OT, Lopez-Munguıa A (1996) Effect of pH in the synthesis of ampicillin by penicillin acylase. Enzyme Microb Technol 19:462–469

    Article  CAS  Google Scholar 

  10. Kasche V, Haufler U, Zollner R (1984) Kinetic-studies on the mechanism of the Penicillin Amidase-catalyzed synthesis of ampicillin and benzylpenicillin. Hoppe-Seyler’s Physiol Chem 365:1435–1443

    CAS  Google Scholar 

  11. Balasingham K, Warburton D, Dunnill P, Lilly MD (1972) Isolation and kinetics of Penicillin Amidase from Escherichia coli. Biochim Biophys Acta 276:250–256

    CAS  Google Scholar 

  12. Plaskie A, Roets E, Vanderhaeghe H (1978) Substrate-specificity of Penicillin Acylase of Escherichia coli. J Antibiot 31:783–788

    CAS  Google Scholar 

  13. Ferreira ALO, Gonçalves LRB, Giordano RC, Giordano RLC (2000) A simplified kinetic model for the side reactions occurring during the enzymatic synthesis of ampicillin. Braz J Chem Eng 17:835–839

    Article  CAS  Google Scholar 

  14. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  15. Gonçalves LRB, Giordano RLC, Giordano RC (1997) Effects of diffusion on the kinetics of maltose hydrolysis using glucoamylase immobilized on macroporous silica. Braz J Chem Eng 14:341–346

    Google Scholar 

  16. Villadsen JV, Michelsen ML (1978) Solution of differential equation models by polinomial approximation. Prentice Hall, Englewood Cliffs

    Google Scholar 

  17. Petzold LR (1989) DDASSL code, version 1989, Computing and Mathematics Research Division, Lawrence National Laboratory

  18. Giordano RLC, Giordano RC, Cooney CL (2000) A study on intra-particle diffusion in enzymatic reactions: glucose–fructose isomerization. Bioproc Eng 23:159–166

    Article  CAS  Google Scholar 

  19. Bittain HG (2005) Solid-state fluorescence of the trihydrate phases of ampicillin and amoxicillin. AAPS Pharm Sci Tech 6:E444–E448

    Article  Google Scholar 

  20. James MNG, Hall D, Hodgkin DC (1968) Crystalline modifications of ampicillin: the trihydrate. Nature 220:168–170

    Article  CAS  Google Scholar 

  21. Boles MO, Girven RJ (1976) The structures of ampicillin: a comparison of the anhydrate and trihydrate forms. Acta Crystallogr B32:2279–2284

    CAS  Google Scholar 

  22. Boles MO, Girven RJ, Gane PAC (1976) The structures of amoxicillin trihydrate and a comparison with the structures of ampicillin. Acta Crystallogr B34:461–466

    Google Scholar 

  23. Cremasco MA (1998) Fundamentos de Transferência de Massa. Ed. Unicamp, Campinas

  24. Fernández-Sanchez VM (2000) Difusão de aminoácidos e proteínas em partículas de gel de agarose. Universidade Federal de São Carlos

  25. Xiao QG, Tao X, Zhang JP; Chen JF (2006) Hollow silica nanotubes for immobilization of penicillin G acylase enzyme. J Mol Catal B Enzym 42:14–19

    Article  CAS  Google Scholar 

  26. Kumar R, Suresh AK, Shankar HS (1996) Kinetics and reaction engineering of penicillin G hydrolysis. J Chem Technol Biot 66:243–250

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brazilian research-funding agencies FAPESP (State of Sao Paulo), CNPq and CAPES (Federal), Hispanagar S.A. and Antibióticos S.A. for the agarose gel and the enzyme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. B. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, L.R.B., Ferreira, A.L.O., Fernandez-Lafuente, R. et al. Influence of mass transfer limitations on the enzymatic synthesis of β-lactam antibiotics catalyzed by penicillin G acylase immobilized on glioxil-agarose. Bioprocess Biosyst Eng 31, 411–418 (2008). https://doi.org/10.1007/s00449-007-0176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0176-2

Keywords

Navigation