Skip to main content
Log in

Kinetic modelling of the sequential production of lactic acid and xylitol from vine trimming wastes

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A mathematical model describing the kinetics of the sequential production of lactic acid and xylitol from detoxified-concentrated vine trimming hemicellulosic hydrolysates by Lactobacillus rhamnosus and Debaryomyces hansenii, respectively, was developed from the basic principles of mass balance in two stages considering as main reactions: (1) glucose and xylose consumption by L. rhamnosus; and (2) xylitol and arabitol production by D. hansenii. The model allows to evaluate the yields and productivities under microaerobic and oxygen restricted conditions (in particular the effects caused by purging the oxygen with nitrogen), which were particularly important during the xylose to xylitol bioconversion by yeasts. The model was tested using experimental data obtained from detoxified-concentrated hemicellulosic hydrolysates, after CaCO3 addition in both types of fermentation processes, without purges (microaerobic conditions) or purging oxygen with nitrogen (oxygen-limited conditions) after sampling in order to reduce the oxygen dissolved. L. rhamnosus was removed by microfiltration before adding D. hansenii at the beginning of the second stage. Mass balance-based and logistic functions were successfully applied to develop the model of the system which properly predicts the consumption of sugars as well as the metabolites produced and yields. The dynamics of fermentation were also adequately described by the developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

k :

Number of reaction (k = 1, 2 or 3)

P 0,rk :

Initial product concentration corresponding to the reaction k (g L−1)

P 1 :

Lactic acid concentration (g L−1)

P 2 :

Xylitol concentration (g L−1)

P 3 :

Ethanol concentration (g L−1)

P 4 :

Arabitol concentration (g L−1)

P 5 :

Acetic acid concentration (g L−1)

P max,rk :

Maximum concentration of product for the reaction k (g L−1)

P r,rk :

Ratio between the initial volumetric rate and the initial concentration P 0,rk (h−1)

r 1 :

Fermentation reaction rate corresponding to reaction R1 (g L−1 h−1)

r 2 :

Fermentation reaction rate corresponding to reaction R2 (g L−1 h−1)

S 1 :

Glucose concentration (g L−1)

S 2 :

Xylose concentration (g L−1)

S 3 :

Arabinose concentration (g L−1)

t 0 :

Time zero of the corresponding stage (h)

t f :

Final time of the corresponding stage (h)

Y P1/S1 :

Lactic acid on glucose yield (g g−1)

Y P1/S2 :

Lactic acid on xylose yield (g g−1)

Y P2/S2 :

Xylitol on xylose yield (g g−1)

Y P2/S3 :

Xylitol on arabinose yield (g g−1)

Y P2/P3 :

Stoichiometric ratio between xylitol and ethanol (g g−1)

Y P4/S3 :

Arabitol on arabinose yield (g g−1)

References

  1. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121(2):123–138

    Article  CAS  Google Scholar 

  2. Qureshi N, Blaschek HP (2000) Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA101. Food Bioprod Process 78(3):139–144

    Article  Google Scholar 

  3. Rodríguez-Couto S (2008) Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol J 3:859–870

    Article  Google Scholar 

  4. OIV (2010) World statistics. In: 8th general assembly of the OIV. Tbilisi, Georgia

  5. Rivas B, Torrado A, Rivas S, Moldes AB, Domínguez JM (2007) Simultaneous lactic acid and xylitol production from vine trimming wastes. J Sci Food Agric 87(8):1603–1612

    Article  CAS  Google Scholar 

  6. Moldes AB, Bustos G, Torrado A, Domínguez JM (2007) Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion. Appl Biochem Biotechnol 143(3):244–256

    Article  CAS  Google Scholar 

  7. Bouchoux A, Roux-de Balmann H, Lutin F (2006) Investigation of nanofiltration as a purification step for lactic acid production processes based on conventional and bipolar electrodialysis operations. Sep Purif Technol 52(2):266–273

    Article  CAS  Google Scholar 

  8. Rivas B, Torre P, Domínguez JM, Converti A, Parajó JC (2006) Purification of xylitol obtained by fermentation of corncob hydrolysates. J Agric Food Chem 54(12):4430–4435

    Article  CAS  Google Scholar 

  9. Walther T, Hensirisak P, Agblevor FA (2001) The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol 76(3):213–220

    Article  CAS  Google Scholar 

  10. Bustos G, Moldes AB, Cruz JM, Domínguez JM (2005) Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnol Prog 21(3):793–798

    Article  CAS  Google Scholar 

  11. Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26(2–4):87–107

    Article  CAS  Google Scholar 

  12. Marques S, Santos JAL, Girio FM, Roseiro JC (2008) Lactic acid production from recycled paper sludge by simultaneous saccharification and fermentation. Biochem Eng J 41(3):210–216

    Article  CAS  Google Scholar 

  13. Tochampa W, Sirisansaneeyakul S, Vanichsriratana W, Srinophakun P, Bakker HHC, Chisti Y (2005) A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst Eng 28(3):175–183

    Article  CAS  Google Scholar 

  14. Parajó JC, Domínguez H, Domínguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme Microb Technol 21(1):18–24

    Article  Google Scholar 

  15. Skoog K, Hahnhagerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10(2):66–80

    Article  CAS  Google Scholar 

  16. Prior BA, Kilian SG, Dupreez JC (1989) Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis—prospects and problems. Process Biochem 24(1):21–32

    CAS  Google Scholar 

  17. Girio FM, Peito MA, Amaral-Collaco MT (1990) Xylitol production by fungi. An enzymatic test for screening good xylitol-produced fungi. In: Grassi G, Gosse G, Dos Santos G (eds) Biomass for energy and industry. Elsevier, Amsterdam

    Google Scholar 

  18. Aranda-Barradas JS, Delia ML, Riba JP (2000) Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioprocess Eng 22(3):219–225

    Article  CAS  Google Scholar 

  19. Amaral-Collaco MT, Girio FM, Peito MA (1989) Utilization of the hemicellulose fraction of agro-industrial residues by yeasts. In: Coughan MP (ed) Enzyme systems for lignocellulosic degradation. Elsevier, London, pp 221–230

    Google Scholar 

  20. Bruinenberg PM, Debot PHM, Vandijken JP, Scheffers WA (1984) NADH-linked aldose reductase—the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19(4):256–260

    Article  CAS  Google Scholar 

  21. Ditzelmuller G, Kubicek CP, Wohrer W, Rohr M (1984) Xylitol dehydrogenase from Pachysolen tannophilus. FEMS Microbiol Lett 25(2–3):195–198

    Article  Google Scholar 

  22. Girio FM, Peito MA, Amaralcollaco MT (1989) Enzymatic and physiological study of d-xylose metabolism by Candida shehatae. Appl Microbiol Biotechnol 32(2):199–204

    Article  CAS  Google Scholar 

  23. Vandeska E, Kuzmanova S, Jeffries TW (1995) Xylitol formation and key enzyme-activities in Candida boidinii under different oxygen-transfer rates. J Ferment Bioeng 80(5):513–516

    Article  CAS  Google Scholar 

  24. Furlan SA, Dupuy ML, Strehaiano P (1989) Bioconversion of d-xylose: aeration and kinetics. In: International conference of biotechnology and food. Stuttgart, Germany, pp 20–24

  25. Horitsu H, Yahashi Y, Takamizawa K, Kawai K, Suzuki T, Watanabe N (1992) Production of xylitol from d-xylose by Candida tropicalis—optimization of production-rate. Biotechnol Bioeng 40(9):1085–1091

    Article  CAS  Google Scholar 

  26. PreziosiBelloy L, Nolleau V, Navarro JM (1997) Fermentation of hemicellulosic sugars and sugar mixtures to xylitol by Candida parapsilosis. Enzyme Microb Technol 21(2):124–129

    Article  CAS  Google Scholar 

  27. Girio FM, Amaro C, Azinheira H, Pelica F, Amaral-Collaco MT (2000) Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresour Technol 71(3):245–251

    Article  CAS  Google Scholar 

  28. Mercier P, Yerushalmi L, Rouleau D, Dochain D (1992) Kinetics of lactic-acid fermentation on glucose and corn by Lactobacillus amylophilus. J Chem Technol Biotechnol 55(2):111–121

    Article  CAS  Google Scholar 

  29. Bastin G, Dochain D (1990) On-line estimation and adaptative control of bioreactors. Elsevier Science, Amsterdam

    Google Scholar 

  30. Bardow A, Marquardt W (2004) Incremental and simultaneous identification of reaction kinetics: methods and comparison. Chem Eng Sci 59(13):2673–2684

    Article  CAS  Google Scholar 

  31. Hanson TP, Tsao GT (1972) Kinetic studies of lactic-acid fermentation in batch and continuous cultures. Biotechnol Bioeng 14(2):233

    Article  CAS  Google Scholar 

  32. Aborhey S, Williamson D (1977) Modeling of lactic-acid production by Streptococcus cremoris Hp. J Gen Appl Microbiol 23(1):7–21

    Article  Google Scholar 

  33. Samuel WA, Lee YY, Anthony WB (1980) Lactic-acid fermentation of crude sorghum extract. Biotechnol Bioeng 22(4):757–777

    Article  CAS  Google Scholar 

  34. Yeh PLH, Bajpai RK, Iannotti EL (1991) An improved kinetic-model for lactic-acid fermentation. J Ferment Bioeng 71(1):75–77

    Article  CAS  Google Scholar 

  35. Friedman MR, Gaden EL (1970) Growth and production by Lactobacillus delbrueckii (L) in a dialysis culture system. Biotechnol Bioeng 12(6):961

    Article  CAS  Google Scholar 

  36. Roy TBV, Blanch HW, Wilke CR (1982) Lactic-acid production by Lactobacillus delbreuckii in a hollow fiber fermenter. Biotechnol Lett 4(8):483–488

    Article  CAS  Google Scholar 

  37. Duarte LC, Carvalheiro F, Neves I, Girio FM (2005) Effects of aliphatic acids, furfural, and phenolic compounds on Debaryomyces hansenii CCMI 941. Appl Biochem Biotechnol 121:413–425

    Article  Google Scholar 

  38. Aguiar WB, Faria LFF, Couto MAPG, Araujo OQF, Pereira N (2002) Growth model, prediction of oxygen transfer rate for xylitol production from d-xylose by C. guilliermondii. Biochem Eng J 12(1):49–59

    Article  CAS  Google Scholar 

  39. Oh DK, Kim SY (1988) Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol 50(4):419–425

    Article  Google Scholar 

  40. Kim JH, Ryu YW, Seo JH (1999) Analysis and optimization of a two-substrate fermentation for xylitol production using Candida tropicalis. J Ind Microbiol Biotechnol 22(3):181–186

    Article  CAS  Google Scholar 

  41. Tavares JM, Duarte LC, Amaral-Collaco MT, Girio FM (2000) The influence of hexoses addition on the fermentation of d-xylose in Debaryomyces hansenii under continuous cultivation. Enzyme Microb Technol 26(9–10):743–747

    Article  CAS  Google Scholar 

  42. Girio FM, Roseiro JC, Samachado P, Duartereis AR, Amaralcollaco MT (1994) Effect of Oxygen-Transfer Rate on Levels of Key Enzymes of Xylose Metabolism in Debaryomyces hansenii. Enzyme Microb Technol 16(12):1074–1078

    Google Scholar 

  43. Ruijter GJG, Vanhanen SA, Gielkens MMC, Van de Vondervoort PJI, Visser J (1997) Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and l-arabinose catabolic enzymes. Microbiology UK 143:2991–2998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of this work to the Xunta de Galicia (project 09TAL13383PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Diéguez, C., Salgado, J.M., Roca, E. et al. Kinetic modelling of the sequential production of lactic acid and xylitol from vine trimming wastes. Bioprocess Biosyst Eng 34, 869–878 (2011). https://doi.org/10.1007/s00449-011-0537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0537-8

Keywords

Navigation