Skip to main content
Log in

Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Pseudomonas taetrolens has recently been revealed as an effective microbial producer of lactobionic acid from carbohydrates contained in dairy byproducts. In terms of food industrial applications, the implementation of lactobionic acid biosynthesis coupled with the classic bacterial production of lactic acid appears an important goal. This research paper studies the simultaneous fermentation of residual cheese whey by P. taetrolens and Lactobacillus casei to co-produce lactic and lactobionic acids. Experimental data showed the importance of the interactions established between the two microorganisms. Changes in physiology, viability, growth, and productive capacity were tested experimentally. Lactobacillus was not seen to suffer any appreciable stress, but considerable variations were observed in the Pseudomonas behavior presumably owing to inhibitory lactic metabolites, interaction that can be classified as microbial amensalism. As to production, lactic acid remained without significant changes in mixed fermentations, whereas the production of lactobionic acid decreased sharply due to the competitive exclusion of Pseudomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Panesar P, Kennedy J, Gandhi D, Bunko K (2007) Bioutilisation of whey for lactic acid production. Food Chem 105:1–14

    Article  CAS  Google Scholar 

  2. Adebola OO, Corcoran O, Morgan WA (2014) Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. J Funct Foods 10:75–84

    Article  CAS  Google Scholar 

  3. Alonso S, Rendueles M, Díaz M (2013) Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv 31:1275–1291

    Article  CAS  Google Scholar 

  4. Gutiérrez LF, Hamoudi S, Belkacemi K (2012) Lactobionic acid: a high value-added lactose derivative for food and pharmaceutical applications. Int Dairy J 26:103–111

    Article  Google Scholar 

  5. Alonso S, Rendueles M, Díaz M (2015) Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresour Technol 196:314–323

    Article  CAS  Google Scholar 

  6. Stodola FH, Lockwood BL (1947) The oxidation of lactose and maltose to bionic acids by Pseudomonas. J Biol Chem 171:213–221

    CAS  Google Scholar 

  7. Kiryu T, Yamauchi K, Masuyama A, Ooe K, Kimura T, Kiso T, Nakano H, Murakami H (2012) Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk, “Caspian Sea yogurt”. Biosci Biotechnol Biochem 76:361–363

    Article  CAS  Google Scholar 

  8. Malvessi E, Carra S, Pasquali FC, Kern DB, da Silveira MM, Ayub MAZ (2013) Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol 40:1–10

    Article  CAS  Google Scholar 

  9. Liang S, Gliniewicz K, Gerritsen AT, McDonald AG (2016) Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid. Bioresour Technol 208:7–12

    Article  CAS  Google Scholar 

  10. Alonso S, Rendueles M, Díaz M (2011) Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresour Technol 102:9730–9736

    Article  CAS  Google Scholar 

  11. Alonso S, Herrero M, Rendueles M, Díaz M (2010) Residual yoghurt whey for lactic acid production. Biomass Bioenergy 34:931–938

    Article  CAS  Google Scholar 

  12. Mahalakshmi R, Murthy V (2000) Growth of Bifidobacterium bifidum in whey-based media. J Ind Microbiol Biotechnol 25:177–179

    Article  CAS  Google Scholar 

  13. Dimitrellou D, Kandylis P, Sidira M, Koutinas AA, Kourkoutas Y (2014) Free and immobilized Lactobacillus casei ATCC 393 on whey protein as starter cultures for probiotic Feta-type cheese production. J Dairy Sci 97:4675–4685

    Article  CAS  Google Scholar 

  14. Naito E, Yoshida Y, Makino K et al (2011) Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. J Appl Microbiol 110:650–657

    Article  CAS  Google Scholar 

  15. Wu C, Zhang J, Wang M, Du G, Chen J (2012) Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J Ind Microbiol Biotechnol 39:1031–1039

    Article  CAS  Google Scholar 

  16. Zotta T, Ricciardi A, Ianniello RG, Parente E, Reale A, Rossi F, Iacumin L, Comi G, Coppola R (2014) Assessment of aerobic and respiratory growth in the Lactobacillus casei group. PLoS One 9:e99189

    Article  Google Scholar 

  17. Longo MA, Novella IS, Garcia LA, Díaz M (1999) Comparison of Bacillus subtilis and Serratia marcescens as protease producers under different operating conditions. J Biosci Bioeng 88:35–40

    Article  CAS  Google Scholar 

  18. Sainz F, Navarro D, Mateo E, Torija MJ, Mas A (2016) Comparison of d-gluconic acid production in selected strains of acetic acid bacteria. Int J Food Microbiol 222:40–47

    Article  CAS  Google Scholar 

  19. Diamantopoulou P, Papanikolaou S, Komaitis M, Aggelis G, Philippoussis A (2014) Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess Biosyst Eng 37:1385–1400

    Article  CAS  Google Scholar 

  20. Du J, Zhou J, Xue J, Song H, Yuan Y (2011) Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgareBacillus megaterium consortium. Metabolomics 8:960–973

    Article  Google Scholar 

  21. Dietz D, Zeng AP (2014) Efficient production of 1,3-propanediol from fermentation of crude glycerol with mixed cultures in a simple medium. Bioprocess Biosyst Eng 37:225–233

    Article  CAS  Google Scholar 

  22. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204

    Article  CAS  Google Scholar 

  23. Alonso S, Herrero M, Rendueles M, Díaz M (2014) Physiological heterogeneity in Lactobacillus casei fermentations on residual yoghurt whey. Process Biochem 49:732–739

    Article  CAS  Google Scholar 

  24. Pauli T, Fitzpatrick JJ (2002) Malt combing nuts as a nutrient supplement to whey permeate for producing lactic by fermentation with Lactobacillus casei. Process Biochem 38:1–6

    Article  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  26. Freire JM, Gaspar D, de la Torre BG, Veiga AS, Andreu D, Castanho MARB (2015) Monitoring antibacterial permeabilization in real time using time-resolved flow cytometry. Biochim Biophys Acta 1848:554–560

    Article  CAS  Google Scholar 

  27. Bunthof CJ, Abee T (2002) Development of a flow cytometric method to analyze subpopulations of bacteria in probiotic products and dairy starters. Appl Environ Microbiol 68:2934–2942

    Article  CAS  Google Scholar 

  28. Moonchai S, Madlhoo W, Jariyachavalit K, Shimizu H, Shioya S, Chauvatcharin S (2005) Application of a mathematical model and differential evolution algorithm approach to optimization of bacteriocin production by Lactococcus lactis C7. Bioprocess Biosyst Eng 28:15–26

    Article  CAS  Google Scholar 

  29. Perez RH, Himeno K, Ishibashi N, Masuda Y, Zendo T, Fujita K, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2012) Monitoring of the multiple bacteriocin production by Enterococcus faecium NKR-5-3 through a developed liquid chromatography and mass spectrometry-based quantification system. J Biosci Bioeng 114:490–496

    Article  CAS  Google Scholar 

  30. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138

    Article  CAS  Google Scholar 

  31. Jamuna M, Jeevaratnam K (2004) Isolation and characterization of lactobacilli from some traditional fermented foods and evaluation of the bacteriocins. J Gen Appl Microbiol 50:79–90

    Article  CAS  Google Scholar 

  32. Digaitiene A, Hansen ÅS, Juodeikiene G, Eidukonyte D, Josephsen J (2012) Lactic acid bacteria isolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against Bacillus subtilis and fungi. J Appl Microbiol 112:732–742

    Article  CAS  Google Scholar 

  33. Pommier S, Strehaiano P, Délia ML (2005) Modelling the growth dynamics of interacting mixed cultures: a case of amensalism. Int J Food Microbiol 100:131–139

    Article  CAS  Google Scholar 

  34. Levine M, Anderson D (1932) Two new species of bacteria causing mustiness in eggs. J Bacteriol 23:337–347

    CAS  Google Scholar 

  35. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek J Microbiol 82:187–216

    Article  Google Scholar 

  36. Mock NM, Baker CJ, Aver’yanov AA (2015) Induction of a viable but not culturable (VBNC) state in some Pseudomonas syringae pathovars upon exposure to oxidation of an apoplastic phenolic, acetosyringone. Physiol Mol Plant Pathol 89:16–24

    Article  CAS  Google Scholar 

  37. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    Google Scholar 

  38. Trevors JT (2011) Viable but non-culturable (VBNC) bacteria: gene expression in planktonic and biofilm cells. J Microbiol Methods 86:266–273

    Article  CAS  Google Scholar 

  39. Schellenberg J, Smoragiewicz W, Karska-Wysocki B (2006) A rapid method combining immunofluorescence and flow cytometry for improved understanding of competitive interactions between lactic acid bacteria (LAB) and methicillin-resistant S. aureus (MRSA) in mixed culture. J Microbiol Methods 65:1–937

    Article  CAS  Google Scholar 

  40. Quirós C, Herrero M, García LA, Díaz M (2009) Quantitative approach to determining the contribution of viable-but-nonculturable subpopulations to malolactic fermentation processes. Appl Environ Microbiol 75:2977–2981

    Article  Google Scholar 

  41. Herrero M, Quirós C, García LA, Díaz M (2006) Use of flow cytometry to follow the physiological states of microorganisms in cider fermentation processes. Appl Environ Microb. 72:6725–6733

    Article  CAS  Google Scholar 

  42. Smid EJ, Lacroix C (2013) Microbe-microbe interactions in mixed culture food fermentations. Curr Opin Biotechnol 24:148–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of Ana Salas (Flow Cytometry Area, Scientific-Technical Services, University of Oviedo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Díaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, C., Rendueles, M. & Díaz, M. Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture. Bioprocess Biosyst Eng 40, 1111–1122 (2017). https://doi.org/10.1007/s00449-017-1773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1773-3

Keywords

Navigation