Skip to main content

Advertisement

Log in

Coordinated charge management for battery electric vehicles

Operation management of charging infrastructures for battery electric vehicles considering vehicle, infrastructure, and grid constraints

  • Special Issue Paper
  • Published:
Computer Science - Research and Development

Abstract

Compared to refueling gasoline powered vehicles, the charging of battery electric vehicles (BEVs) takes considerably more time which renders a single-purpose charging infrastructure inconvenient. More likely, the charging stations will be integrated into the parking infrastructure (parking decks, public, private and commercial parking sites). On average the duration of the parking will be longer than the duration of the charging process which creates a potential for load shifting. In turn this implies that the rated power of large charging infrastructures can be chosen to be smaller than the sum of rated powers of all charging points, provided that the load shifting potential can be activated. In this paper a complete description of the problem at hand is given in terms of a mixed integer linear program which can readily be integrated into the operation management of charging infrastructures. It allows to coordinate the charging processes of multiple BEVs to fully exploit the load shifting potential while taking into account the limitations of the distribution grid, the charging infrastructure, and the BEVs. In addition to ensuring the safety of the operation, the objective of the optimization can be adapted to set use-case specific incentives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Note, that the current communication standards [3, 10, 11] do not support SOC-dependent maximal charging powers. For further information on the parameterization of \(P^{max}(SOC)\) within the MILP model and the realization in the field trials, please see (7) and Sect. 5, respectively.

  2. Here \(i_1\) denotes the index of a subnode of the grid connection point (level 0). Consequently the index \(i_l\) is referring to the ith subnode connected to a node in level l-1.

References

  1. Braam F, Mierau M, Kohrs (2014) Modellprädiktiv optimiertes Management für Elektrofahrzeug-Ladecluster. In: VDE-Kongress 2014 Smart Cities, 2014 VDE, pp 111–116

  2. Dauer D, Gottwalt S, Schweinfort W, Walker G (2014) Lademanagement für Elektrofahrzeuge am Beispiel der Netzampel. In: VDE-Kongress 2014

  3. DIN Deutsches Institut für Normung eV (2011) DIN EN 61851-1:2011, Teil 1: Allgemeine Anforderungen. Tech. rep

  4. Ecker M, Nieto N, Kbitz S, Schmalstieg J, Blanke H, Warnecke A, Sauer DU (2014) Calendar and cycle life study of li(nimnco)o2-based 18650 lithium-ion batteries. Journal of Power Sources 248(0):839– 851. doi:10.1016/j.jpowsour.2013.09.143. http://www.sciencedirect.com/science/article/pii/S0378775313016510

  5. Feuerhahn S (2011) OpenMUC - Monitor & Control. Online. http://www.openmuc.org

  6. Gan L, Topcu U, Low S (2012) Stochastic distributed protocol for electric vehicle charging with discrete charging rate. In: Power and Energy Society General Meeting, 2012 IEEE, pp 1–8

  7. Hu J, You S, Oestergaard J, Lind M, Wu Q (2011) Optimal charging schedule of an electric vehicle fleet. In: Universities’ Power Engineering Conference (UPEC), Proceedings of 2011 46th International, pp 1–6

  8. Hu J, You S, Lind M, Ostergaard J (2014) Coordinated charging of electric vehicles for congestion prevention in the distribution grid. Smart Grid, IEEE Transactions on 5(2):703–711. doi:10.1109/TSG.2013.2279007

  9. Iria J, Soares F, Franchin I, Silva N (2014) Development of a novel management system for electric vehicle charging. In: Electric Vehicle Conference (IEVC), 2014 IEEE International, pp 1–7

  10. ISO (2013) Iso 15118-1 general information and use-case definition. Tech. rep

  11. ISO (2014) Iso 15118-2 network and application protocol requirements. Tech. rep

  12. LCIE Bureau Veritas (2013) Technical requirements table. Tech. rep

  13. Ma WJ, Gupta V, Topcu U (2014) Distributed charging control of electric vehicles using regret minimization. In: IEEE 53rd Annual Conference on Decision and Control (CDC), 2014, pp 4917–4923

  14. Mierau M (2016) Intelligente Ladeinfrastruktur mit Netzintegration, intellan, final report. German National Library of Science and Technology (to be published)

  15. Mittelsdorf M (2015) Fellbach ZEROplus - Elektromobilität und Energieplushaus. In: Fachforum Energieeffizienzhaus-Plus, OTTI

  16. MJ Bradley & Associates LLC (2014) Electric Vehicle Grid Integration in the U.S., Europe and China. Tech. rep., The Regulatory Assistance Project

  17. Mock P, Yang Z (2014) Driving electrification, a global comparison of fiscal incentive policy for electric vehicles. Tech. rep, The International Council On Clean Transportation, Whitepaper

  18. Peas Lopes J, Soares F, Almeida P (2009) Identifying management procedures to deal with connection of electric vehicles in the grid. In: PowerTech, 2009 IEEE Bucharest, pp 1–8. doi:10.1109/PTC.2009.5282155

  19. Rassaei F, Soh WS, Chua KC (2015) Demand response for residential electric vehicles with random usage patterns in smart grids. Sustainable Energy, IEEE Transactions on 6(4):1367–1376. doi:10.1109/TSTE.2015.2438037

  20. Richardson P, Flynn D, Keane A (2010) Impact assessment of varying penetrations of electric vehicles on low voltage distribution systems. In: IEEE Power and Energy Society General Meeting, pp 1–6

  21. Rivera J, Jacobsen HA (2014) A distributed anytime algorithm for network utility maximization with application to real-time ev charging control. In: IEEE 53rd Annual Conference on Decision and control (CDC), 2014, pp 947–952

  22. Rotering N, Ilic M (2011) Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets. Power Systems, IEEE Transactions on 26(3):1021–1029. doi:10.1109/TPWRS.2010.2086083

  23. Salah F, Ilg JP, Flath CM, Basse H, van Dinther C (2015) Impact of electric vehicles on distribution substations: a swiss case study. Applied Energy 137:88–96. doi:10.1016/j.apenergy.2014.09.091. http://www.sciencedirect.com/science/article/pii/S0306261914010393

  24. Sundstrom O, Binding C (2012) Flexible charging optimization for electric vehicles considering distribution grid constraints. IEEE Transactions on Smart Grid, 3(1):26–37. doi:10.1109/TSG.2011.2168431

  25. Tang W, Bi S, Zhang YJ (2013) Online speeding optimal charging algorithm for electric vehicles without future information. In: IEEE International Conference on Smart Grid Communications (SmartGridComm), 2013, pp 175–180

  26. Unda IG, Papadopoulos P, Skarvelis-Kazakos S, Cipcigan LM, Jenkins N, Zabala E (2014) Management of electric vehicle battery charging in distribution networks with multi-agent systems. Electric Power Systems Research 110:172–179. doi:10.1016/j.epsr.2014.01.014. http://www.sciencedirect.com/science/article/pii/S0378779614000182

  27. Verzijlbergh RA, Vries LJD, Lukszo Z (2014) Renewable energy sources and responsive demand. Do we need congestion management in the distribution grid? IEEE Transactions on Power Systems 29(5):2119–2128. doi:10.1109/TPWRS.2014.2300941

  28. Wu D, Zeng H, Boulet B (2014) Neighborhood level network aware electric vehicle charging management with mixed control strategy. In: Electric Vehicle Conference (IEVC), 2014 IEEE International, pp 1–7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Braam.

Additional information

This work was partially supported by the German Federal Ministry for the Environment, Nature Conservation, Building and Reactor Safety within the project Intellan under grant number 16EM1059 and by German Federal Ministry of Transport and Digital Infrastructure within the framework of the livinglab emobil BW showcase project Fellbach ZEROplus under grant number 16SBW012A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braam, F., Groß, A., Mierau, M. et al. Coordinated charge management for battery electric vehicles. Comput Sci Res Dev 32, 183–193 (2017). https://doi.org/10.1007/s00450-016-0307-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-016-0307-6

Keywords

Navigation