Skip to main content
Log in

Generalised k-Steiner Tree Problems in Normed Planes

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The 1-Steiner tree problem, the problem of constructing a Steiner minimum tree containing at most one Steiner point, has been solved in the Euclidean plane by Georgakopoulos and Papadimitriou using plane subdivisions called oriented Dirichlet cell partitions. Their algorithm produces an optimal solution within O(n 2) time. In this paper we generalise their approach in order to solve the k-Steiner tree problem, in which the Steiner minimum tree may contain up to k Steiner points for a given constant k. We also extend their approach further to encompass other normed planes, and to solve a much wider class of problems, including the k-bottleneck Steiner tree problem and other generalised k-Steiner tree problems. We show that, for any fixed k, such problems can be solved in O(n 2k) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bae, S.W., Lee, C., Choi, S.: On exact solutions to the Euclidean bottleneck Steiner tree problem. Inf. Process. Lett. 110, 672–678 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bae, S.W., Choi, S., Lee, C., Tanigawa, S.: Exact algorithms for the bottleneck Steiner tree problem. Algorithmica 61, 924–947 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brazil, M., Zachariasen, M.: Steiner trees for fixed orientation metrics. J. Glob. Optim. 43, 141–169 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chew, L.P., Drysdale, R.L. III: Voronoi diagrams based on convex distance functions. In: Proceedings 1st ACM Symposium on Computational Geometry, pp. 235–244 (1985)

    Google Scholar 

  5. Drezner, Z., Wesolowsky, G.O.: A new method for the multifacility minimax location problem. J. Oper. Res. Soc. 29, 1095–1101 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ganley, J.L.: Geometric Interconnection and Placement Algorithms. Ph.D. Thesis, Department of Computer Science, University of Virginia, Charlottesville, VA (1995)

  7. Ganley, J.L., Salowe, J.S.: Optimal and approximate bottleneck Steiner trees. Oper. Res. Lett. 19, 217–224 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Georgakopoulos, G., Papadimitriou, C.H.: The 1-Steiner tree problem. J. Algorithms 8, 122–130 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Griffith, J., Robins, G., Salowe, J.S., Zhang, T.: Closing the gap: near-optimal Steiner trees in polynomial time. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 13, 1351–1365 (1994)

    Article  Google Scholar 

  10. Hwang, F.K., Weng, J.F.: The shortest network under a given topology. J. Algorithms 13, 468–488 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Johnson, D.B., Metaxas, P.: Optimal algorithms for the vertex updating problem of a minimum spanning tree. In: Proceedings of the Sixth International Parallel Processing Symposium, March, pp. 306–314 (1992)

    Chapter  Google Scholar 

  12. Kahng, A.B., Robins, G.: A new class of iterative Steiner tree heuristics with good performance. IEEE Trans. Comput.-Aided Des. 11, 893–902 (1992)

    Article  Google Scholar 

  13. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, Algorithms and Combinatorics, vol. 21, pp. 120–121. Springer, Berlin (2008)

    Google Scholar 

  14. Lee, J.: A First Course in Combinatorial Optimization. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Lin, G.-H., Thurber, A.P., Xue, G.: The 1-Steiner tree problem in lambda-3 geometry plane. In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, vol. 6, pp. 125–128 (1999)

    Google Scholar 

  16. Love, R.F., Wesolowsky, G.O., Kraemer, S.A.: A multifacility minimax location method for Euclidean distances. Int. J. Prod. Res. 11, 37–45 (1973)

    Article  Google Scholar 

  17. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discrete Comput. Geom. 8, 265–293 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rubinstein, J.H., Thomas, D.A., Weng, J.F.: Degree-five Steiner points cannot reduce network costs for planar sets. Networks 22, 531–537 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16-th Annual Symposium on Foundations of Computer Science, pp. 151–162 (1975)

    Google Scholar 

  20. Warme, D.M., Winter, P., Zachariasen, M.: Exact algorithms for Steiner tree problems: a computational study. In: Du, D., Smith, J.M., Rubinstein, J.H. (eds.) Advances in Steiner Trees, pp. 81–116. Kluwer Academic, Dordrecht (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Brazil.

Additional information

This research was supported by an ARC Discovery Grant. Part of this paper was written while Konrad Swanepoel was visiting the Department of Mechanical Engineering of the University of Melbourne on a Tewkesbury Fellowship.

CUBIN is an affiliated program of National ICT Australia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazil, M., Ras, C.J., Swanepoel, K.J. et al. Generalised k-Steiner Tree Problems in Normed Planes. Algorithmica 71, 66–86 (2015). https://doi.org/10.1007/s00453-013-9780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9780-5

Keywords

Navigation