Skip to main content
Log in

On the Geometric Set Multicover Problem

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In the Set Multicover problem, we are given a set system \((X,{\mathcal {S}})\), where X is a finite ground set, and \({\mathcal {S}}\) is a collection of subsets of X. Each element \(x \in X\) has a non-negative demand d(x). The goal is to pick a smallest cardinality sub-collection \({\mathcal {S}}'\) of \({\mathcal {S}}\) such that each point is covered by at least d(x) sets from \({\mathcal {S}}'\). In this paper, we study the set multicover problem for set systems defined by points and non-piercing regions in the plane, which includes disks, pseudodisks, k-admissible regions, squares, unit height rectangles, homothets of convex sets, upward paths on a tree, etc. We give a polynomial time \((2+\epsilon )\)-approximation algorithm for the set multicover problem \((P,{\mathcal {R}})\), where P is a set of points with demands, and \({\mathcal {R}}\) is a set of non-piercing regions, as well as for the set multicover problem \(({\mathcal {D}}, P)\), where \({\mathcal {D}}\) is a set of pseudodisks with demands, and P is a set of points in the plane, which is the hitting set problem with demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In the weighted setting, the sets have non-negative weights, and the goal is to find a minimum weight feasible sub-collection, as opposed to the minimum cardinality.

References

  1. Agarwal, P.K., Pan, J.: Near-linear algorithms for geometric hitting sets and set covers. Discrete Comput. Geom. 63(2), 460–482 (2020)

    Article  MathSciNet  Google Scholar 

  2. Aschner, R., Katz, M.J., Morgenstern, G., Yuditsky, Y.: Approximation schemes for covering and packing. In: 7th International Workshop on Algorithms and Computation (Kharagpur 2013). Lecture Notes in Comput. Sci., vol. 7748, pp. 89–100. Springer, Heidelberg (2013)

  3. Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. J. Comput. Geom. 7(1), 221–236 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Basu Roy, A., Govindarajan, S., Raman, R., Ray, S.: Packing and covering with non-piercing regions. Discrete Comput. Geom. 60(2), 471–492 (2018)

    Article  MathSciNet  Google Scholar 

  5. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

    Article  MathSciNet  Google Scholar 

  6. Bus, N., Garg, S., Mustafa, N.H., Ray, S.: Tighter estimates for ffl-nets for disks. Comput. Geom. 53, 27–35 (2016)

    Article  MathSciNet  Google Scholar 

  7. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (Kyoto 2012), pp. 1576–1585. ACM, New York (2012)

  8. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chan, T.M., He, Q.: Faster approximation algorithms for geometric set cover. In: 36th International Symposium on Computational Geometry. Leibniz Int. Proc. Inform., vol. 164, # 27. Leibniz-Zent. Inform., Wadern (2020)

  10. Chekuri, Ch., Clarkson, K.L., Har-Peled, S.: On the set multicover problem in geometric settings. ACM Trans. Algorithms 9(1), # 9 (2012)

  11. Chekuri, Ch., Har-Peled, S., Quanrud, K.: Fast LP-based approximations for geometric packing and covering problems. In: 31st ACM-SIAM Symposium on Discrete Algorithms (Salt Lake City 2020), pp. 1019–1038. SIAM, Philadelphia (2020)

  12. Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric set cover. Discrete Comput. Geom. 37(1), 43–58 (2007)

    Article  MathSciNet  Google Scholar 

  13. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for \(k\)-means and \(k\)-median in Euclidean and minor-free metrics. SIAM J. Comput. 48(2), 644–667 (2019)

    Article  MathSciNet  Google Scholar 

  14. Cohen-Addad, V., Mathieu, C.: Effectiveness of local search for geometric optimization. In: 31st International Symposium on Computational Geometry (Eindhoven 2015). Leibniz Int. Proc. Inform., vol. 34, pp. 329–344. Leibniz-Zent. Inform., Wadern (2015)

  15. Erlebach, Th., van Leeuwen, E.J.: PTAS for weighted set cover on unit squares. In: Approximation, Randomization, and Combinatorial Optimization (Barcelona 2010). Lecture Notes in Comput. Sci., vol. 6302, pp. 166–177. Springer, Berlin (2010)

  16. Even, G., Rawitz, D., Shahar, Sh.: Hitting sets when the VC-dimension is small. Inform. Process. Lett. 95(2), 358–362 (2005)

    Article  MathSciNet  Google Scholar 

  17. Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45(4), 634–652 (1998)

    Article  MathSciNet  Google Scholar 

  18. Friggstad, Z., Khodamoradi, K., Rezapour, M., Salavatipour, M.R.: Approximation schemes for clustering with outliers. In: 29th Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans 2018), pp. 398–414. SIAM, Philadelphia (2018)

  19. Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for \(k\)-means in doubling metrics. SIAM J. Comput. 48(2), 452–480 (2019)

    Article  MathSciNet  Google Scholar 

  20. Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: Guarding terrains via local search. J. Comput. Geom. 5(1), 168–178 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the \(\log n\) barrier. In: 18th Annual European Symposium on Algorithms (Liverpool 2010), part I. Lecture Notes in Comput. Sci., vol. 6346, pp. 243–254. Springer, Berlin (2010)

  22. Haussler, D., Welzl, E.: \(\varepsilon \)-nets and simplex range queries. Discrete Comput. Geom. 2(2), 127–151 (1987)

    Article  MathSciNet  Google Scholar 

  23. Jartoux, B., Mustafa, N.H.: Optimality of geometric local search. In: 34th International Symposium on Computational Geometry (Budapest 2018). Leibniz Int. Proc. Inform., vol. 99, # 48. Leibniz-Zent. Inform., Wadern (2018)

  24. Komlós, J., Pach, J., Woeginger, G.: Almost tight bounds for \(\varepsilon \)-nets. Discrete Comput. Geom. 7(2), 163–173 (1992)

    Article  MathSciNet  Google Scholar 

  25. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: 42nd International Colloquium on Automata, Languages, and Programming (Kyoto 2015), part I. Lecture Notes in Comput. Sci., vol. 9134, pp. 898–909. Springer, Heidelberg (2015)

  26. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  Google Scholar 

  27. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom. 44(4), 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  28. Pinchasi, R.: A finite family of pseudodiscs must include a “small’’ pseudodisc. SIAM J. Discrete Math. 28(4), 1930–1934 (2014)

    Article  MathSciNet  Google Scholar 

  29. Raman, R., Ray, S.: Constructing planar support for non-piercing regions. Discrete Comput. Geom. 64(3), 1098–1122 (2020)

    Article  MathSciNet  Google Scholar 

  30. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In: 42nd ACM International Symposium on Theory of Computing (Cambridge 2010), pp. 641–647. ACM, New York (2010)

  31. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Raman.

Additional information

Editor in Charge János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, R., Ray, S. On the Geometric Set Multicover Problem. Discrete Comput Geom 68, 566–591 (2022). https://doi.org/10.1007/s00454-022-00402-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00402-y

Keywords

Mathematics Subject Classification

Navigation