Skip to main content
Log in

A-posteriori error estimation for the finite point method with applications to compressible flow

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech 29:123–160

    Article  MathSciNet  Google Scholar 

  2. Oberkampf WL, Trucano TG (2002) Verification and validation in computational fluid dynamics. Prog Aerosp Sci 38:209–272

    Article  Google Scholar 

  3. Roy CJ (2005) Review of code and solution verification procedures for computational simulation. J Comput Phys 205:131–156

    Article  MATH  Google Scholar 

  4. Thacker BH et al (2004) Concepts of model verification and validation. Los Alamos National Laboratory, LA-14167-MS

  5. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24:337–357

    Article  MathSciNet  MATH  Google Scholar 

  6. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery (SPR) and a-posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33:1365–1382

    Article  MATH  Google Scholar 

  7. Babuska I, Miller A (1984) Post-processing approach in the finite element method. Part 3: a-posteriori error estimates and adaptive mesh selection. Int J Numer Methods Eng 20(12):2311–2324

    Article  MATH  Google Scholar 

  8. Oden JT, Wu W, Ainsworth M (1993) An a-posteriori error estimate for finite element approximations of the Navier–Stokes equations. Comput Methods Appl Mech Eng 111:185–202

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang S, Haworth DC (1997) Adaptive grid refinement using cell-level and global imbalances. Int J Numer Methods Fluids 24:375–392

    Article  MATH  Google Scholar 

  10. Oden JT, Prudhomme S (1999) New approaches to error estimation and adaptivity for the Stokes and Oseen equations. Int J Numer Methods Fluids 31:3–15

    Article  MathSciNet  MATH  Google Scholar 

  11. Oñate E et al (2006) Error estimation and mesh adaptivity in incompressible viscous flows using a residual power approach. Comput Methods Appl Mech Eng 195:339–362

    Article  MathSciNet  MATH  Google Scholar 

  12. Venditti DA, Darmofal DL (2000) Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one dimensional flow. J Comput Phys 164:204–227

    Article  MathSciNet  MATH  Google Scholar 

  13. Fidkowski KJ, Darmofal DL (2011) Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J 49(4):673–694

    Article  Google Scholar 

  14. Dwight RP (2008) Heuristic a-posteriori estimation of error due to dissipation in finite volume schemes with application to mesh adaptation. J Comput Phys 227(5):2845–2863

    Article  MATH  Google Scholar 

  15. Zhang XD, Trépanier JY, Camarero R (2000) A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws. Comput Methods Appl Mech Eng 185:1–19

    Article  MathSciNet  MATH  Google Scholar 

  16. Hay A, Visonneau M (2006) Error estimation using the error transport equation for finite-volume methods and arbitrary meshes. Int J Comput Fluid Dyn 20(7):463–479

    Article  MathSciNet  MATH  Google Scholar 

  17. Shih T, Qin Y (2007) A-posteriori method for estimating and correcting grid-induced errors in CFD solutions. Part 1: theory and method. AIAA Paper 2007-100

  18. Roy CJ (2009) Strategies for driving mesh adaption in CFD. AIAA Paper 2009-1302

  19. Muzaferija S, Gosman D (1996) Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology. J Comput Phys 138:766–787

    Article  MathSciNet  MATH  Google Scholar 

  20. Blottner FG, Lopez AR (1998) Determination of solution accuracy of numerical schemes as part of code and calculation verification. SANDIA report SAND98-2222

  21. Berger MJ, Jameson A (1985) Automatic adaptive grid refinement for the Euler equations. Retrieved from http://hdl.handle.net/2060/19840009909

  22. Baker TJ (1997) Mesh adaptation strategies for problems in fluid dynamics. Finite Elem Anal Des 25:243–273

    Article  MathSciNet  MATH  Google Scholar 

  23. Aftosmis MJ, Berger M (2002) Multilevel error estimation and adaptive h-refinement for cartesian meshes with embedded boundaries. AIAA Paper 2002-0863

  24. Fulton SR (2003) On the accuracy of multigrid truncation error estimates. Electron Trans Numer Anal 15:29–37

    MathSciNet  MATH  Google Scholar 

  25. Gao H, Wang ZJ (2011) A residual-based procedure for hp-adaptation on 2D hybrid meshes. AIAA Paper 2011-492

  26. Richardson LF (1910) The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos Trans R Soc Lond Ser A 210(459–470):307–357

    MATH  Google Scholar 

  27. Richardson LF, Gaunt JA (1927) The deferred approach to the limit. Philos Trans R Soc Lond Ser A 226(636–646):299–349

    Article  MATH  Google Scholar 

  28. Cadafalch J et al (2002) Verification of finite volume computations on steady-state fluid flow and heat transfer. J Fluids Eng 124:11–21

    Article  Google Scholar 

  29. Roy CJ, Blottner FG (2003) Methodology for turbulence model validation: application to hypersonic flows. J Spacecr Rockets 40(3):313–325

    Article  Google Scholar 

  30. Roy CJ (2003) Grid convergence error analysis for mixed-order numerical schemes. AIAA J 41:595–604

    Article  Google Scholar 

  31. Salas MD (2006) Some observations on grid convergence. Comput Fluids 35:688–692

  32. Roache PJ (1994) Perspective: a method for uniform reporting of grid refinement studies. J Fluids Eng 116:405–413

    Article  Google Scholar 

  33. Barth TJ (1991) A 3D upwind euler solver for unstructured meshes. AiAA Paper 1991-1548

  34. Zhang Z, Naga A (2005) A new finite element gradient recovery method: superconvergence property. SIAM J Sci Comput 26(4):1192–1213

    Article  MathSciNet  MATH  Google Scholar 

  35. Cueto-Felgueroso L et al (2007) Finite volume solvers and moving least-squares approximations for the compressible Navier–Stokes equations on unstructured grids. Comput Methods Appl Mech Eng 196(45–48):4712–4736

    Article  MathSciNet  MATH  Google Scholar 

  36. Duarte CA, Oden JT (1996) An h-p adaptive method using clouds. Comput Methods Appl Mech Eng 139:237–262

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu WK et al (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Methods Fluids 24(12):1391–1415

    Article  MathSciNet  MATH  Google Scholar 

  38. Gavete L, Cuesta JL, Ruiz A (2002) A numerical comparison of two different approximations of the error in a meshless method. Eur J Mech Solids 21:1037–1054

    Article  MATH  Google Scholar 

  39. Lee CK, Zhou CE (2004) On error estimation and adaptive refinement for element free Galerkingmethod. Part I: stress recovery and a posteriori error estimation. Comput Struct 82:413–428

    Article  Google Scholar 

  40. Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Eng 63:1559–1582

    Article  MathSciNet  MATH  Google Scholar 

  41. Li Q, Lee K-M (2006) An adaptive meshless method for magnetic field computation. IEEE Trans Magn 42(8):1996–2003

    Article  Google Scholar 

  42. Angulo A, Pérez Pozo L, Perazzo F (2009) A posteriori error estimator and an adaptive technique in meshless finite point method. Eng Anal Bound Elem 33(11):1322–1338

    Article  MathSciNet  MATH  Google Scholar 

  43. You Y, Chen JS, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31(3–4):316–326

    MATH  Google Scholar 

  44. Perazzo F, Löhner R, Perez-Pozo L (2007) Adaptive methodology for meshless finite point method. Adv Eng Softw 39:156–166

    Article  Google Scholar 

  45. Afshar MH, Lashckarbolok M (2008) Collocated discrete least-squares (CDLS) meshless method: error estimate and adaptive refinement. Int J Numer Methods Fluids 56:1909–1928

    Article  MATH  Google Scholar 

  46. Boroomand B, Najjar M, Oñate E (2009) The generalized finite point method. Comput Mech 44(2):173–190

    Article  MathSciNet  MATH  Google Scholar 

  47. Rüter M, Chen JS (2015) A multi-space error estimation approach for meshfree methods. In: Conference applications of mathematics 2015. Prague

  48. Oñate E et al (1996) A stabilized Finite Point Method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139:315–346

    Article  MathSciNet  MATH  Google Scholar 

  49. Löhner R et al (2002) A Finite Point Method for compressible flow. Int J Numer Methods Eng 53:1765–1779

    Article  MATH  Google Scholar 

  50. Ortega E, Oñate E, Idelsohn S (2009) A finite point method for adaptive three-dimensional compressible flow calculations. Int J Numer Methods Fluids 60:937–971

    Article  MathSciNet  MATH  Google Scholar 

  51. Ortega E, Oñate E, Idelsohn S (2007) An improved finite point method for three-dimensional potential flows. Comput Mech 40:949–963

    Article  MathSciNet  MATH  Google Scholar 

  52. Ortega E et al (2014) Comparative accuracy and performance assessment of the finite point method in compressible flow problems. Comput Fluids 59:53–65

    Article  MathSciNet  Google Scholar 

  53. Fischer T (1996) A contribution to adaptive numerical solution of compressible flow problems. Universitat Politècnica de Catalunya, Barcelona

    MATH  Google Scholar 

  54. Chen R, Chen Y (2008) Error estimates for the finite point method. Appl Numer Math 58(6):884–898

    Article  MathSciNet  Google Scholar 

  55. Katz A (2009) Meshless methods for computational fluid dynamics. ProQuest dissertations and theses, Thesis (Ph.D.), Stanford University

  56. Ortega E, Oñate E, Idelsohn S, Flores R (2014) Comparative accuracy and performance assessment of the Finite Point Method in compressible flow problems. Comput Fluids 89:53–65

    Article  MathSciNet  Google Scholar 

  57. Roe PL (1981) Approximate Riemann solvers, parameter vectors and difference schemes. J Comput Phys 43:357–372

    Article  MathSciNet  MATH  Google Scholar 

  58. Turkel E (1988) Improving the accuracy of central difference schemes. ICASE Report 88-53

  59. Van Albada GD, Van Leer B, Roberts WWJ (1982) A comparative study of computational methods in cosmic gas dynamics. Astron Astrophys 108:76–84

    MATH  Google Scholar 

  60. Jameson A (1993) Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows. AIAA-93-3359

  61. Jameson A, Baker TJ (1987) Improvements to the aircraft Euler method. AIAA Paper 87-0452

  62. Van Leer B (1979) Towards the ultimate conservative difference scheme. V, A second order sequel to Godunov’s method. J Comput Phys 32:101–136

    Article  MATH  Google Scholar 

  63. Berger M, Aftosmis MJ (2005) Analysis of slope limiters on irregular grids. AIAA Paper 2005-0490

  64. Harten A et al (1987) Uniformly high-order accurate essential non-oscillatory schemes III. J Comput Phys 71:231–303

    Article  MathSciNet  MATH  Google Scholar 

  65. Liu X, Osher S, Chen TF (1994) Weighted essential non-oscillatory schemes. J Comput Phys 115:200–212

    Article  MathSciNet  MATH  Google Scholar 

  66. Qiu J, Shu C (2003) Hermite WENO schemes and their application as limiters for the Runge–Kutta discontinuous Galerking method: one dimensional case. J Comput Phys 193:115–135

    Article  MATH  Google Scholar 

  67. Serna S, Marquina A (2004) Power ENO methods: a fifth-order accurate weighted power ENO method. J Comput Phys 194:632–658

    Article  MathSciNet  MATH  Google Scholar 

  68. Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  69. Ortega E et al (2013) A meshless finite point method for three-dimensional analysis of compressible flow problems involving moving boundaries and adaptivity. Int J Numer Methods Fluids 73(4):323–343

    Article  MathSciNet  Google Scholar 

  70. Loving D, Estabrooks B (1951) Transonic-wing investigation in the Langley 8-foot high-speed tunnel at high subsonic Mach numbers and at a Mach number of 1.2. Analysis of pressure distribution of wing-fuselage configuration having a wing of \(45^{{\rm o}}\) sweepback, aspect ratio 4, taper ratio 0.6, and NACA 65A006 airfoil section. National Advisory Committee for Aeronautics. Research Memorandum NACA RM L51F07

Download references

Acknowledgements

Part of this work was developed within the ALEF (Aerodynamic Loads Estimation at Extremes of the Flight Envelope) project under the European Commission’s 7th Framework Programme (contract number ACP7-GA-2009-211785). The authors gratefully acknowledge the support provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Ortega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, E., Flores, R., Oñate, E. et al. A-posteriori error estimation for the finite point method with applications to compressible flow. Comput Mech 60, 219–233 (2017). https://doi.org/10.1007/s00466-017-1402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1402-7

Keywords

Navigation