Skip to main content
Log in

Surface corrections for peridynamic models in elasticity and fracture

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Peridynamic models are derived by assuming that a material point is located in the bulk. Near a surface or boundary, material points do not have a full non-local neighborhood. This leads to effective material properties near the surface of a peridynamic model to be slightly different from those in the bulk. A number of methods/algorithms have been proposed recently for correcting this peridynamic surface effect. In this study, we investigate the efficacy and computational cost of peridynamic surface correction methods for elasticity and fracture. We provide practical suggestions for reducing the peridynamic surface effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The r-ratio is called the m-ratio in the literature [9]; however, here we had to rename it because of the conflict with the weighted volume function m in Eq. (6).

References

  1. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    Article  MathSciNet  MATH  Google Scholar 

  2. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83:1526–1535

    Article  Google Scholar 

  3. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88:151–184

    Article  MathSciNet  MATH  Google Scholar 

  4. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93:13–37

    Article  MathSciNet  MATH  Google Scholar 

  5. Emmrich E, Weckner O (2007) On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun Math Sci 5:851–864

    Article  MathSciNet  MATH  Google Scholar 

  6. Han W, Liu WK (2005) Flexible piecewise approximations based on partition of unity. Adv Comput Math 23:191–199

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim DW, Liu WK (2006) Maximum principle and convergence analysis for the meshfree point collocation method. SIAM J Numer Anal 44:515–539

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part I: theoretical formulation. Comput Methods Appl Mech Eng 193:933–951

    Article  MATH  Google Scholar 

  9. Li S, Lu H, Han W, Liu WK, Simkins DC (2004) Reproducing kernel element method Part II: globally conforming \(I^m/C^n\) hierarchies. Comput Methods Appl Mech Eng 193:953–987

    Article  MATH  Google Scholar 

  10. Lu H, Li S, Simkins DC, Liu WK, Cao J (2004) Reproducing kernel element method Part III: generalized enrichment and applications. Comput Methods Appl Mech Eng 193:989–1011

    Article  MATH  Google Scholar 

  11. Simkins DC, Li S, Lu H, Liu WK (2004) Reproducing kernel element method. Part IV: globally compatible \(\text{ C }^{{\rm n}} ({\rm n}\geqslant 1)\) triangular hierarchy. Comput Methods Appl Mech Eng 193:1013–1034

    Article  MATH  Google Scholar 

  12. Gerstle W H, Sau N, Silling S A (2005) Peridynamic modeling of plain and reinforced concrete structures. In: Presented at the 18th international conference on structural mechanics in reactor technology, Beijing, China

  13. Bobaru F, Ha YD (2011) Adaptive refinement and multiscale modeling in 2D peridynamics. J Multisc Comput Eng 9:635–660

    Article  Google Scholar 

  14. Chen Z, Bakenhus D, Bobaru F (2016) A constructive peridynamic kernel for elasticity. Comput Methods Appl Mech Eng 311:356–373

    Article  MathSciNet  Google Scholar 

  15. Chen Z, Bobaru F (2015) Selecting the kernel in a peridynamic formulation: a study for transient heat diffusion. Comput Phys Commun 197:51–60

    Article  Google Scholar 

  16. Du Q, Tian L, Zhao X (2013) A convergent adaptive finite element algorithm for nonlocal diffusion and peridynamic models. SIAM J Num Anal 51:1211–1234

    Article  MathSciNet  MATH  Google Scholar 

  17. Tian XC, Du Q (2013) Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J Num Anal 51:3458–3482

    Article  MathSciNet  MATH  Google Scholar 

  18. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Fin Elem Anal Design 43:1169–1178

    Article  MathSciNet  Google Scholar 

  19. Gunzburger M, Lehoucq RB (2010) A nonlocal vector calculus with application to nonlocal boundary value problems. Multisc Model Simul 8:1581–1598

    Article  MathSciNet  MATH  Google Scholar 

  20. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168

    Article  Google Scholar 

  21. Bobaru F, Foster JT, Geubelle PH, Silling SA (2017) Handbook of peridynamic modeling. CRC Press, Taylor & Francis Group, Boca Raton

    MATH  Google Scholar 

  22. Le QV, Chan WK, Schwartz J (2014) A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. Int J Numer Methods Eng 98:547–561

    Article  MathSciNet  MATH  Google Scholar 

  23. Sarego G, Le QV, Bobaru F, Zaccariotto M, Galvanetto U (2016) Linearized state-based peridynamics for 2D problems. Int J Numer Methods Eng 108:1174–1197

    Article  Google Scholar 

  24. Madenci E, Oterkus E (2014) Coupling of the peridynamic theory and finite element method. In: Peridynamic theory and its applications, Springer, ed New York, pp 191–202

  25. Oterkus E (2010) Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures, Ph.D. thesis, The University of Arizona

  26. Mitchell JA, Silling SA, Littlewood DJ (2015) A position-aware linear solid constitutive model for peridynamics. J Mech Mater Struct 10:539–557

    Article  MathSciNet  Google Scholar 

  27. Emmrich E, Weckner O (2007) The peridynamic equation and its spatial discretisation. Math Model Anal 12:17–27

    Article  MathSciNet  MATH  Google Scholar 

  28. Seleson P, Parks ML, Gunzburger M, Lehoucq RB (2009) Peridynamics as an upscaling of molecular dynamics. Multisc Model Simul 8:204–227

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen Z, Bobaru F (2015) Peridynamic modeling of pitting corrosion damage. J Mech Phys Solids 78:352–381

    Article  MathSciNet  Google Scholar 

  30. Seleson P (2014) Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations. Comput Methods Appl Mech Eng 282:184–217

    Article  MathSciNet  Google Scholar 

  31. Henke SF, Shanbhag S (2014) Mesh sensitivity in peridynamic simulations. Comput Phys Commun 185:181–193

    Article  MathSciNet  MATH  Google Scholar 

  32. Hu W, Ha Y D, Bobaru F (2010) Numerical integration in peridynamics. In: Technical report, University of Nebraska-Lincoln

  33. Du Q, Gunzburger M, Lehoucq RB, Zhou K (2013) A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math Models Methods Appl Sci 23:493–540

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao Y, Tian X, Du Q (2017) Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations. Appl Math Comput 305:282–298

    MathSciNet  Google Scholar 

  35. Shewchuk JR (1994) An introduction to the conjugate gradient method without the agonizing pain. In: Technical report school of computer science. Carnegie Mellon University

  36. Silling SA (2010) Linearized theory of peridynamic states. J Elast 99:85–111

    Article  MathSciNet  MATH  Google Scholar 

  37. Kilic B, Madenci E (2010) Peridynamic theory for thermomechanical analysis. IEEE Trans Adv Packag 33:97–105

    Article  Google Scholar 

  38. Kilic B, Agwai A, Madenci E (2009) Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos Struct 90:141–151

    Article  Google Scholar 

  39. Bobaru F, Yang M, Alves LF, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77:852–877

    Article  MATH  Google Scholar 

  40. Dipasquale D, Sarego G, Zaccariotto M, Galvanetto U (2016) Dependence of crack paths on the orientation of regular 2D peridynamic grids. Eng Fract Mech 160:248–263

    Article  Google Scholar 

  41. Hu W, Ha YD, Bobaru F (2011) Modeling dynamic fracture and damage in a fiber-reinforced composite lamina with peridynamics. Intl J Multisc Comput Eng 9:707–726

    Article  Google Scholar 

  42. Gerstle WH (2016) Introduction to Practical Peridynamics. World Scientific Publishing Co., Singapore

    Google Scholar 

  43. Ha Y, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162:229–244

    Article  MATH  Google Scholar 

  44. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, Berlin

    Book  MATH  Google Scholar 

  45. Timoshenko S, Goodier JN (1969) Theory of elasticity. McGraw-Hill, New York City

    MATH  Google Scholar 

  46. Oterkus S, Madenci E, Agwai A (2014) Peridynamic thermal diffusion. J Comput Phys 265:71–96

    Article  MathSciNet  MATH  Google Scholar 

  47. Oterkus S (2015) Peridynamics for the solution of multiphysics problems. Ph.D. thesis, The University of Arizona

  48. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Article  Google Scholar 

  49. Hu W, Ha Y, Bobaru F, Silling S (2012) The formulation and computation of the nonlocal J-integral in bond-based peridynamics. Int J Fract 176:195–206

    Article  Google Scholar 

  50. Silling SA (2014) Origin and effect of nonlocality in a composite. J Mech Mater Struct 9:245–258

    Article  Google Scholar 

  51. Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190:1–22

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by AFOSR MURI Center for Materials Failure Prediction through Peridynamics (program managers Drs. Jaimie Tiley, David Stargel, Ali Sayir, and Fariba Fahroo) and ONR grant (program manager William Nickerson).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bobaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, Q.V., Bobaru, F. Surface corrections for peridynamic models in elasticity and fracture. Comput Mech 61, 499–518 (2018). https://doi.org/10.1007/s00466-017-1469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1469-1

Keywords

Navigation