Skip to main content
Log in

Mechanical stimulation of cell microenvironment for cardiac muscle tissue regeneration: a 3D in-silico model

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The processes in which cardiac cells are reorganized for tissue regeneration is still unclear. It is a complicated process that is orchestrated by many factors such as mechanical, chemical, thermal, and/or electrical cues. Studying and optimizing these conditions in-vitro is complicated and time costly. In such cases, in-silico numerical simulations can offer a reliable solution to predict and optimize the considered conditions for the cell culture process. For this aim, a 3D novel and enhanced numerical model has been developed to study the effect of the mechanical properties of the extracellular matrix (ECM) as well as the applied external forces in the process of the cell differentiation and proliferation for cardiac muscle tissue regeneration. The model has into account the essential cellular processes such as migration, cell–cell interaction, cell–ECM interaction, differentiation, proliferation and/or apoptosis. It has employed to study the initial stages of cardiac muscle tissue formation within a wide range of ECM stiffness (8–50 kPa). The results show that, after cell culture within a free surface ECM, cells tend to form elongated aggregations in the ECM center. The formation rate, as well as the aggregation morphology, have been found to be a function of the ECM stiffness and the applied external force. Besides, it has been found that the optimum ECM stiffness for cardiovascular tissue regeneration is in the range of 29–39 kPa, combined with the application of a mechanical stimulus equivalent to deformations of 20–25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. World Health Organization (2017) Cardiovascular diseases. http://www.who.int/es/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  2. Ferrari R (2002) Healthy versus sick myocytes: metabolism, structure and function. Eur Heart J Suppl 4(G):G1–G12. https://doi.org/10.1016/S1520-765X(02)90084-2

    Article  Google Scholar 

  3. Colvin M, Smith JM, Hadley N, Skeans MA, Carrico R, Uccellini K, Lehman R, Robinson A, Israni AK, Snyder JJ, Kasiske BL (2018) OPTN/SRTR 2016 annual data report: heart. Am J Transplant 18:291–362. https://doi.org/10.1111/ajt.14561

    Article  Google Scholar 

  4. Costa KD, Lee EJ, Holmes JW (2003) Creating alignment and anisotropy in engineered heart tissue: role of boundary conditions in a model three-dimensional culture system. Tissue Eng 9(4):567–577. https://doi.org/10.1089/107632703768247278

    Article  Google Scholar 

  5. Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, Suh KY, Tung L, Levchenko A (2010) Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci 107(2):565–570. https://doi.org/10.1073/pnas.0906504107

    Article  Google Scholar 

  6. Bissell MJ, Rizki A, Mian IS (2003) Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol. https://doi.org/10.1016/j.ceb.2003.10.016

    Article  Google Scholar 

  7. Bhana B, Iyer RK, Chen WLK, Zhao R, Sider KL, Likhitpanichkul M, Simmons CA, Radisic M (2010) Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng 105(6):1148–1160. https://doi.org/10.1002/bit.22647

    Article  Google Scholar 

  8. Mansour H, De Tombe PP, Samarel AM, Russell B (2004) Restoration of resting sarcomere length after uniaxial static strain is regulated by protein kinase C\(\epsilon \) and focal adhesion kinase. Circ Res 94(5):642–649. https://doi.org/10.1161/01.RES.0000121101.32286.C8

    Article  Google Scholar 

  9. Planat-Bénard V, Menard C, André M, Puceat M, Perez A, Garcia-Verdugo JM, Pénicaud L, Casteilla L (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94(2):223–229. https://doi.org/10.1161/01.RES.0000109792.43271.47

    Article  Google Scholar 

  10. Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352(6335):536–539. https://doi.org/10.1038/352536a0

    Article  Google Scholar 

  11. Heller LJ, Mohrman DE, Prohaska JR (2000) Decreased passive stiffness of cardiac myocytes and cardiac tissue from copper-deficient rat hearts. Am J Physiol Heart Circ Physiol 278(6):H1840–H1847

    Article  Google Scholar 

  12. Madden L, Juhas M, Kraus WE, Truskey GA, Bursac N (2015) Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. eLife. https://doi.org/10.7554/eLife.04885

    Article  Google Scholar 

  13. Kim J, Oliveira VK, Yamamoto A, Perlingeiro RC (2017) Generation of skeletal myogenic progenitors from human pluripotent stem cells using non-viral delivery of minicircle DNA. Stem Cell Res 23:87–94. https://doi.org/10.1016/j.scr.2017.07.013

    Article  Google Scholar 

  14. Ye L, Zhang S, Greder L, Dutton J, Keirstead SA, Lepley M, Zhang L, Kaufman D, Zhang J (2013) Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PLoS ONE 8(1):201–205. https://doi.org/10.1371/journal.pone.0053764

    Article  Google Scholar 

  15. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N (2013) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34(23):5813–5820. https://doi.org/10.1016/j.biomaterials.2013.04.026

    Article  Google Scholar 

  16. Jackman CP, Ganapathi AM, Asfour H, Qian Y, Allen BW, Li Y, Bursac N (2018) Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation. Biomaterials 159:48–58. https://doi.org/10.1016/j.biomaterials.2018.01.002

    Article  Google Scholar 

  17. Yang G, Xiao Z, Ren X, Long H, Ma K, Qian H, Guo Y (2017) Obtaining spontaneously beating cardiomyocyte-like cells from adipose-derived stromal vascular fractions cultured on enzyme-crosslinked gelatin hydrogels. Sci Rep 7(February):1–11. https://doi.org/10.1038/srep41781

    Article  Google Scholar 

  18. Jackman CP, Carlson AL, Bursac N (2016) Dynamic culture yields engineered myocardium with near-adult functional output. Biomaterials 111:66–79. https://doi.org/10.1016/j.biomaterials.2016.09.024

    Article  Google Scholar 

  19. Rao L, Qian Y, Khodabukus A, Ribar T, Bursac N (2018) Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat Commun 9(1):126. https://doi.org/10.1038/s41467-017-02636-4

    Article  Google Scholar 

  20. Carlier A, Skvortsov GA, Hafezi F, Ferraris E, Patterson J, Koc B, Van Oosterwyck H (2016) Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering. Biofabrication 8(2):025009. https://doi.org/10.1088/1758-5090/8/2/025009

    Article  Google Scholar 

  21. Galbusera F, Cioffi M, Raimondi MT (2008) An in silico bioreactor for simulating laboratory experiments in tissue engineering. Biomed Microdevices 10(4):547–554. https://doi.org/10.1007/s10544-008-9164-9

    Article  Google Scholar 

  22. Galbusera F, Cioffi M, Raimondi MT, Pietrabissa R (2007) Computational modeling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Comput Methods Biomech Biomed Eng 10(4):279–287. https://doi.org/10.1080/10255840701318404

    Article  Google Scholar 

  23. Khayyeri H, Checa S, Tägil M, O’Brien FJ, Prendergast PJ (2010) Tissue differentiation in an in vivo bioreactor: in silico investigations of scaffold stiffness. J Mater Sci Mater Med 21(8):2331–2336. https://doi.org/10.1007/s10856-009-3973-0

    Article  Google Scholar 

  24. Sandino C, Planell JA, Lacroix D (2008) A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech 41(5):1005–1014. https://doi.org/10.1016/j.jbiomech.2007.12.011

    Article  Google Scholar 

  25. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3):345–357. https://doi.org/10.1016/S0092-8674(00)81279-9

    Article  Google Scholar 

  26. Griffith LG (2002) Tissue engineering-current challenges and expanding opportunities. Science 295(5557):1009–1014. https://doi.org/10.1126/science.1069210

    Article  Google Scholar 

  27. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Mol Cell Biol 8(october):839–845

    Google Scholar 

  28. Giannitelli SM, Accoto D, Trombetta M, Rainer A (2014) Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. https://doi.org/10.1016/j.actbio.2013.10.024

    Article  Google Scholar 

  29. Ramtani S (2004) Mechanical modelling of cell/ECM and cell/cell interactions during the contraction of a fibroblast-populated collagen microsphere: theory and model simulation. J Biomech 37(11):1709–1718. https://doi.org/10.1016/j.jbiomech.2004.01.028

    Article  Google Scholar 

  30. Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89(2):1389–1397. https://doi.org/10.1529/biophysj.105.060723

    Article  Google Scholar 

  31. Mogilner A (2009) Mathematics of cell motility: have we got its number? J Math Biol 58(1–2):105–134. https://doi.org/10.1007/s00285-008-0182-2

    Article  MathSciNet  MATH  Google Scholar 

  32. Mousavi SJ, Doweidar M, Doblaré M (2014) Computational modelling and analysis of mechanical conditions on cell locomotion and cell–cell interaction. Comput Methods Biomech Biomed Eng 17(6):678–693. https://doi.org/10.1080/10255842.2012.710841

    Article  Google Scholar 

  33. Stéphanou A, Mylona E, Chaplain M, Tracqui P (2008) A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J Theor Biol 253(4):701–716. https://doi.org/10.1016/j.jtbi.2008.04.035

    Article  MathSciNet  MATH  Google Scholar 

  34. Marzban B, Yuan H (2017) The effect of thermal fluctuation on the receptor-mediated adhesion of a cell membrane to an elastic substrate. Membranes 7(2):24. https://doi.org/10.3390/membranes7020024

    Article  Google Scholar 

  35. Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265(3):433. https://doi.org/10.1016/j.jtbi.2010.04.023

    Article  MATH  Google Scholar 

  36. Shao D, Rappel WJ, Levine H (2010) Computational model for cell morphodynamics. Phys Rev Lett 105(10):108104. https://doi.org/10.1103/PhysRevLett.105.108104

    Article  Google Scholar 

  37. Mousavi SJ, Doblaré M, Doweidar MH (2014) Computational modelling of multi-cell migration in a multi-signalling substrate. Phys Biol 11(2):026002. https://doi.org/10.1088/1478-3975/11/2/026002

    Article  Google Scholar 

  38. Mousavi SJ, Doweidar MH (2014) A novel mechanotactic 3D modeling of cell morphology. Phys Biol 11(4):046005. https://doi.org/10.1088/1478-3975/11/4/046005

    Article  Google Scholar 

  39. Mousavi SJ, Doweidar MH (2015) Role of mechanical cues in cell differentiation and proliferation: a 3D numerical model. PLoS ONE 10(5):e0124529. https://doi.org/10.1371/journal.pone.0124529

    Article  Google Scholar 

  40. Mogilner A, Oster G (1996) Cell motility driven by actin polymerization. Biophys J 71(6):3030. https://doi.org/10.1016/S0006-3495(96)79496-1

    Article  Google Scholar 

  41. Gavagnin E, Yates CA (2018) In: Handbook of statistics, vol 39 pp 37–91. https://doi.org/10.1016/bs.host.2018.06.002

  42. Higazi AA, Kniss D, Manuppello J, Barnathan ES, Cines DB (1996) Thermotaxis of human trophoblastic cells. Placenta 17(8):683. https://doi.org/10.1016/S0143-4004(96)80019-1

    Article  Google Scholar 

  43. Discher DE (2005) Tissue cells feel and respon to the stiffness of their substrate. Science 310(5751):1139–1143. https://doi.org/10.1126/science.1116995

    Article  Google Scholar 

  44. Zhao M (2009) Electrical fields in wound healing: an overriding signal that directs cell migration. Semin Cell Dev Biol 20(6):674–687. https://doi.org/10.1016/j.semcdb.2008.12.009

    Article  Google Scholar 

  45. Lintz M, Muñoz A, Reinhart-King CA (2017) The mechanics of single cell and collective migration of tumor cells. J Biomech Eng 139(2):021005. https://doi.org/10.1115/1.4035121

    Article  Google Scholar 

  46. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science. https://doi.org/10.1126/science.1092053

    Article  Google Scholar 

  47. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754. https://doi.org/10.1016/J.TCB.2011.09.005

    Article  Google Scholar 

  48. Brandi ML (2009) Microarchitecture, the key to bone quality. Rheumatology 48:iv3–iv8. https://doi.org/10.1093/rheumatology/kep273

    Article  Google Scholar 

  49. Mousavi SJ (2015) Computational modeling of cell behavior in three-dimensional matrices. Ph.D. thesis, Universidad de Zaragoza

  50. Mousavi SJ, Doweidar MH, Doblaré M (2013) 3D computational modelling of cell migration: a mechano-chemo-thermo-electrotaxis approach. J Theor Biol 329:64–73. https://doi.org/10.1016/j.jtbi.2013.03.021

    Article  MATH  Google Scholar 

  51. Schäfer A, Radmacher M (2005) Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater 1(3):273–280. https://doi.org/10.1016/j.actbio.2005.02.004

    Article  Google Scholar 

  52. Darling EM, Topel M, Zauscher S, Vail TP, Guilak F (2008) Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41(2):454–464. https://doi.org/10.1016/j.jbiomech.2007.06.019

    Article  Google Scholar 

  53. Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA (2001) Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech 34(12):1545–1553. https://doi.org/10.1016/S0021-9290(01)00149-X

    Article  Google Scholar 

  54. Shi X, Qin L, Zhang X, He K, Xiong C, Fang J, Fang X, Zhang Y (2011) Elasticity of cardiac cells on the polymer substrates with different stiffness: an atomic force microscopy study. Phys Chem Chem Phys 13(16):7540. https://doi.org/10.1039/c1cp20154a

    Article  Google Scholar 

  55. Chen QZ, Harding SE, Ali NN, Lyon AR, Boccaccini AR (2008) Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng R Rep 59(1–6):1–37. https://doi.org/10.1016/j.mser.2007.08.001

    Article  Google Scholar 

  56. Roy P, Petroll W, Cavanagh H, Chuong C, Jester J (1997) Anin vitroforce measurement assay to study the early mechanical interaction between corneal fibroblasts and collagen matrix. Exp Cell Res 232(1):106–117. https://doi.org/10.1006/excr.1997.3511

    Article  Google Scholar 

  57. Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B (2012) 3D traction forces in cancer cell invasion. PLoS ONE 7(3):e33476. https://doi.org/10.1371/journal.pone.0033476

    Article  Google Scholar 

  58. van Helvert S, Storm C, Friedl P (2018) Mechanoreciprocity in cell migration. Nat Cell Biol 20(1):8–20. https://doi.org/10.1038/s41556-017-0012-0

    Article  Google Scholar 

  59. Gardel ML, Sabass B, Ji L, Danuser G, Schwarz US, Waterman CM (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J Cell Biol 183(6):999–1005. https://doi.org/10.1083/jcb.200810060

    Article  Google Scholar 

  60. Rodriguez ML, Graham BT, Pabon LM, Han SJ, Murry CE, Sniadecki NJ, Pabon LM, Murry CE, Graham BT, Han SJ, Rodriguez ML, Graham BT, Pabon LM, Han SJ, Murry CE, Sniadecki NJ, Pabon LM, Murry CE, Graham BT, Han SJ, Rodriguez ML (2014) Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. J Biomech Eng 136(5):051005. https://doi.org/10.1115/1.4027145

    Article  Google Scholar 

  61. Duan B, Kapetanovic E, Hockaday L, Butcher J (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846. https://doi.org/10.1016/j.actbio.2013.12.005

    Article  Google Scholar 

  62. Akiyama SK, Yamada KM (1985) The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem 260(7):4492–4500

    Google Scholar 

  63. Akiyama SK, Hasegawa E, Hasegawa T, Yamada KM (1985) The interaction of fibronectin fragments with fibroblastic cells. J Biol Chem 260(24):13256–13260

    Google Scholar 

  64. Berry H, Larreta-Garde V (1999) Oscillatory behavior of a simple kinetic model for proteolysis during cell invasion. Biophys J 77(2):655–665. https://doi.org/10.1016/S0006-3495(99)76921-3

    Article  Google Scholar 

  65. Mousavi SJ, Doweidar MH (2018) Encapsulated piezoelectric nanoparticlehydrogel smart material to remotely regulate cell differentiation and proliferation: a finite element model. Comput. Mech. https://doi.org/10.1007/s00466-018-1604-7

    Article  MATH  Google Scholar 

  66. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154(5):1047–1059. https://doi.org/10.1016/j.cell.2013.07.042

    Article  Google Scholar 

  67. Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M (2014) YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 588(16):2663–2670. https://doi.org/10.1016/j.febslet.2014.04.012

    Article  Google Scholar 

  68. Abercrombie M (1979) Contact inhibition and malignancy. Nature 281(5729):259–262. https://doi.org/10.1038/281259a0

    Article  Google Scholar 

  69. Stoppel WL, Kaplan DL, Black LD (2016) Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv. Drug Deliv. Rev. 96:135–155. https://doi.org/10.1016/j.addr.2015.07.009

    Article  Google Scholar 

  70. Li Z, Guo X, Palmer AF, Das H, Guan J (2012) High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel. Acta Biomater. 8(10):3586–3595. https://doi.org/10.1016/j.actbio.2012.06.024

    Article  Google Scholar 

  71. Kang Kt, Park Jh, Kim Hj, Lee HyHm, Lee Ki, Jung Hh, Lee HyHm, Jang JW (2011) Study of tissue differentiation of mesenchymal stem cells by mechanical stimuli and an algorithm for bone fracture healing. Tissue Eng Regen Med 8(4):359–370

    Google Scholar 

  72. Asumda FZ, Asumda FZ (2013) Towards the development of a reliable protocol for mesenchymal stem cell cardiomyogenesis. Stem Cell Discov 03(01):13–21. https://doi.org/10.4236/scd.2013.31003

    Article  Google Scholar 

  73. Wu QQ, Chen Q (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256(2):383–391. https://doi.org/10.1006/excr.2000.4847

    Article  Google Scholar 

  74. Young JL, Kretchmer K, Ondeck MG, Zambon AC, Engler AJ (2015) Mechanosensitive kinases regulate stiffness-induced cardiomyocyte maturation. Sci Rep 4(1):6425. https://doi.org/10.1038/srep06425

    Article  Google Scholar 

  75. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  Google Scholar 

  76. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, Rivera-Feliciano J, Mooney DJ (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9(6):518–526. https://doi.org/10.1038/nmat2732

    Article  Google Scholar 

  77. Kearney EM, Prendergast PJ, Campbell Va (2008) Mechanisms of strain-mediated mesenchymal stem cell apoptosis. J Biomech Eng 130(6):061004. https://doi.org/10.1115/1.2979870

    Article  Google Scholar 

  78. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

    Article  Google Scholar 

  79. Trubelja A, Bao G (2018) Molecular mechanisms of mechanosensing and mechanotransduction in living cells. Extreme Mech Lett 20:91–98. https://doi.org/10.1016/j.eml.2018.01.011

    Article  Google Scholar 

  80. Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ’feel’ outside and in? J Cell Sci 123(3):297–308. https://doi.org/10.1242/jcs.041186

    Article  Google Scholar 

  81. Delaine-Smith RM, Reilly GC (2012) Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2(3):169–180

    Google Scholar 

  82. Ulrich TA, De Juan Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69(10):4167–4174. https://doi.org/10.1158/0008-5472.CAN-08-4859

    Article  Google Scholar 

  83. Fouliard S, Benhamida S, Lenuzza N, Xavier F (2009) Modeling and simulation of cell populations interaction. Math Comput Model 49(11–12):2104–2108. https://doi.org/10.1016/j.mcm.2008.07.003

    Article  MathSciNet  MATH  Google Scholar 

  84. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, Dulce R, Pattany PM, Valdes D, Revilla C, Heldman AW, McNiece I, Hare JM (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107(7):913–922. https://doi.org/10.1161/CIRCRESAHA.110.222703

    Article  Google Scholar 

  85. Cheng G, Tse J, Jain RK, Munn LL (2009) Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS ONE 4(2):e4632. https://doi.org/10.1371/journal.pone.0004632

    Article  Google Scholar 

  86. Foglia MJ, Poss KD (2016) Building and re-building the heart by cardiomyocyte proliferation. Development 143(5):729–740. https://doi.org/10.1242/dev.132910

    Article  Google Scholar 

  87. Vargas-González A (2014) La proliferación de los miocitos ventriculares del corazón de mamífero adulto: un fenómeno esporádico pero factible. Archiv Cardiología de México 84(2):102–109. https://doi.org/10.1016/j.acmx.2014.01.002

    Article  Google Scholar 

  88. Yutzey KE (2017) Cardiomyocyte proliferation. Circ Res 120(4):627–629. https://doi.org/10.1161/circresaha.116.310058

    Article  Google Scholar 

  89. Ahuja P, Sdek P, MacLellan WR (2007) Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev 87(2):521–544. https://doi.org/10.1152/physrev.00032.2006

    Article  Google Scholar 

  90. Roveimiab Z, Lin F, Anderson JE (2019) Emerging development of microfluidics-based approaches to improve studies of muscle cell migration. Tissue Eng Part B Rev 25(1):30–45. https://doi.org/10.1089/ten.teb.2018.0181

    Article  Google Scholar 

  91. Abaqus 6.11 User Subroutines Reference Manual (2011)

  92. Bian W, Bursac N (2009) Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials 30(7):1401–1412. https://doi.org/10.1016/j.biomaterials.2008.11.015

    Article  Google Scholar 

  93. Sheehy SP, Grosberg A, Parker KK (2012) The contribution of cellular mechanotransduction to cardiomyocyte form and function. Biomech Model Mechanobiol 11(8):1227–1239. https://doi.org/10.1007/s10237-012-0419-2

    Article  Google Scholar 

  94. Chen QZZ, Bismarck A, Hansen U, Junaid S, Tran MQ, Harding SE, Ali NN, Boccaccini AR (2008) Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 29(1):47–57. https://doi.org/10.1016/j.biomaterials.2007.09.010

    Article  Google Scholar 

  95. Ye J, Boyle AJ, Shih H, Sievers RE, Wang ZE, Gormley M, Yeghiazarians Y (2013) CD45-positive cells are not an essential component in cardiosphere formation. Cell Tissue Res 351(1):201–205. https://doi.org/10.1007/s00441-012-1511-8

    Article  Google Scholar 

  96. Ikonen L, Kerkelä E, Metselaar G, Stuart MCA, de Jong MR, Aalto-Setälä K (2013) 2D and 3D self-assembling nanofiber hydrogels for cardiomyocyte culture. BioMed Res Int 2013:1–12. https://doi.org/10.1155/2013/285678

    Article  Google Scholar 

  97. Formigli L, Francini F, Nistri S, Margheri M, Luciani G, Naro F, Silvertown JD, Orlandini SZ, Meacci E, Bani D (2009) Skeletal myoblasts overexpressing relaxin improve differentiation and communication of primary murine cardiomyocyte cell cultures. J Mol Cell Cardiol 47(2):335–345. https://doi.org/10.1016/j.yjmcc.2009.05.008

    Article  Google Scholar 

  98. Sassoli C, Pini A, Mazzanti B, Quercioli F, Nistri S, Saccardi R, Orlandini SZ, Bani D, Formigli L (2011) Mesenchymal stromal cells affect cardiomyocyte growth through juxtacrine Notch-1/Jagged-1 signaling and paracrine mechanisms: Clues for cardiac regeneration. J Mol Cell Cardiol 51(3):399–408. https://doi.org/10.1016/j.yjmcc.2011.06.004

    Article  Google Scholar 

  99. Tahara N, Brush M, Kawakami Y (2016) Cell migration during heart regeneration in zebrafish. Dev Dyn. https://doi.org/10.1002/dvdy.24411

    Article  Google Scholar 

  100. Reig G, Pulgar E, Concha ML (2014) Cell migration: from tissue culture to embryos. Development 141(10):1999–2013. https://doi.org/10.1242/dev.101451

    Article  Google Scholar 

  101. Rangarajan S, Madden L, Bursac N (2014) Use of flow, electrical, and mechanical stimulation to promote engineering of striated muscles. Ann Biomed Eng 42(7):1391–1405. https://doi.org/10.1007/s10439-013-0966-4

    Article  Google Scholar 

  102. Guo Y, Jardin BD, Zhou P, Sethi I, Akerberg BN, Toepfer CN, Ai Y, Li Y, Ma Q, Guatimosim S, Hu Y, Varuzhanyan G, VanDusen NJ, Zhang D, Chan DC, Yuan GC, Seidman CE, Seidman JG, Pu WT (2018) Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat Commun 9(1):3837. https://doi.org/10.1038/s41467-018-06347-2

    Article  Google Scholar 

  103. Lee EJ, Holmes JW, Costa KD (2008) Remodeling of engineered tissue anisotropy in response to altered loading conditions. Ann Biomed Eng 36(8):1322–1334. https://doi.org/10.1007/s10439-008-9509-9

    Article  Google Scholar 

  104. Huang Y, Zheng L, Gong X, Jia X, Song W, Liu M, Fan Y (2012) Effect of cyclic strain on cardiomyogenic differentiation of rat bone marrow derived mesenchymal stem cells. PLoS ONE 7(4):e34960. https://doi.org/10.1371/journal.pone.0034960

    Article  Google Scholar 

  105. Maul TM, Chew DW, Nieponice A, Vorp DA (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10(6):939–953. https://doi.org/10.1007/s10237-010-0285-8

    Article  Google Scholar 

  106. Rørth P (2009) Collective cell migration. Annu Rev Cell Dev Biol 25(1):407–429. https://doi.org/10.1146/annurev.cellbio.042308.113231

    Article  Google Scholar 

  107. Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17(2):97–109. https://doi.org/10.1038/nrm.2015.14

    Article  Google Scholar 

  108. te Boekhorst V, Preziosi L, Friedl P (2016) Plasticity of cell migration in vivo and in silico. Annu Rev Cell Dev Biol 32(1):491–526. https://doi.org/10.1146/annurev-cellbio-111315-125201

    Article  Google Scholar 

  109. Young JL, Engler AJ (2011) Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 32(4):1002–1009. https://doi.org/10.1016/j.biomaterials.2010.10.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Spanish Ministry of Science and Innovation (PID2019-106099RB-C44 / AEI / 10.13039/501100011033), the Government of Aragon (DGA-T24_20R) and the Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). CIBER-BBN is financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. Doweidar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 2549 KB)

Supplementary material 2 (mp4 8272 KB)

Supplementary material 3 (mp4 2294 KB)

Supplementary material 4 (mp4 2339 KB)

Supplementary material 5 (mp4 2373 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urdeitx, P., Doweidar, M.H. Mechanical stimulation of cell microenvironment for cardiac muscle tissue regeneration: a 3D in-silico model. Comput Mech 66, 1003–1023 (2020). https://doi.org/10.1007/s00466-020-01882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01882-6

Keywords

Navigation