Skip to main content

Advertisement

Log in

Epigenetics and developmental programming of adult onset diseases

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Maternal perturbations or sub-optimal conditions during development are now recognized as contributing to the onset of many diseases manifesting in adulthood. This “developmental programming” of disease has been explored using animal models allowing insights into the potential mechanisms involved. Impaired renal development, resulting in a low nephron number, has been identified as a common outcome that is likely to contribute to the development of hypertension in the offspring as adults. Changes in other organs and systems, including the heart and the hypothalamic–pituitary–adrenal axis, have also been found. Evidence has recently emerged suggesting that epigenetic changes may occur as a result of developmental programming and result in permanent changes in the expression patterns of particular genes. Such epigenetic modifications may be responsible not only for an increased susceptibility to disease for an individual, but indirectly for the establishment of a disease state in a subsequent generation. Further research in this field, particularly examination as to whether epigenetic changes to genes affecting kidney development do occur, are essential to understanding the underlying mechanisms of developmental programming of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. National Center for Health Statistics, Centers for Disease Control and Prevention, U.S. Department of Health and Human Services (2011) Health, United States, 2010: with special feature on death and dying. National Center for Health Statistics, Hyattsville

  2. Nuyt AM (2008) Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci 114:1–17

    Article  PubMed  CAS  Google Scholar 

  3. Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081

    Article  PubMed  CAS  Google Scholar 

  4. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  PubMed  CAS  Google Scholar 

  5. Huxley RR, Neil HAW (2004) Does maternal nutrition in pregnancy and birth weight influence levels of CHD risk factors in adult life? Br J Nutr 91:459–468

    Article  PubMed  CAS  Google Scholar 

  6. Moritz KM, Wintour EM, Black MJ, Bertram JF, Caruana G (2008) Factors influencing mammalian kidney development: implications for health in adult life. Adv Anat Embryol Cell Biol 196:1–78

    Article  PubMed  CAS  Google Scholar 

  7. Pinney SE, Simmons RA (2010) Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab 21:223–229

    Article  PubMed  CAS  Google Scholar 

  8. Drake AJ, Liu L (2010) Intergenerational transmission of programmed effects: public health consequences. Trends Endocrinol Metab 21:206–213

    Article  PubMed  CAS  Google Scholar 

  9. Harrison M, Langley-Evans SC (2009) Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr 101:1020–1030

    Article  PubMed  CAS  Google Scholar 

  10. Barker DJP (2008) Human growth and cardiovascular disease. Nestlé Nutr Workshop Ser Pediatr Program 61:21–38

    Article  PubMed  Google Scholar 

  11. Mazzuca MQ, Wlodek ME, Dragomir NM, Parkington HC, Tare M (2010) Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J Physiol (Lond) 588:1997–2010

    Article  CAS  Google Scholar 

  12. Bubb KJ, Cock ML, Black MJ, Dodic M, Boon WM, Parkington HC, Harding R, Tare M (2007) Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J Physiol (Lond) 578:871–881

    Article  CAS  Google Scholar 

  13. Shaltout HA, Chappell MC, Rose JC, Diz DI (2011) Exaggerated sympathetic mediated responses to behavioral or pharmacological challenges following antenatal betamethasone exposure. Am J Physiol Endocrinol Metab 300:E979–E985

    Article  PubMed  CAS  Google Scholar 

  14. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    PubMed  CAS  Google Scholar 

  15. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  PubMed  CAS  Google Scholar 

  16. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(1):R47–R58

    Article  PubMed  CAS  Google Scholar 

  17. Kouzarides T (2007) SnapShot: histone-modifying enzymes. Cell 131:822

    Article  PubMed  CAS  Google Scholar 

  18. Cattanach BM, Beechey CV (1990) Autosomal and X-chromosome imprinting. Dev Suppl:63–72

  19. Efstratiadis A (1994) Parental imprinting of autosomal mammalian genes. Curr Opin Genet Dev 4:265–280

    Article  PubMed  CAS  Google Scholar 

  20. Radford EJ, Ferrón SR, Ferguson-Smith AC (2011) Genomic imprinting as an adaptative model of developmental plasticity. FEBS Lett 585:2059–2066

    Article  PubMed  CAS  Google Scholar 

  21. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  22. Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci USA 80:5559–5563

    Article  PubMed  CAS  Google Scholar 

  23. Yoder JA, Soman NS, Verdine GL, Bestor TH (1997) DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J Mol Biol 270:385–395

    Article  PubMed  CAS  Google Scholar 

  24. Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140

    Article  PubMed  CAS  Google Scholar 

  25. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881

    Article  PubMed  CAS  Google Scholar 

  26. Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101–1105

    Article  PubMed  CAS  Google Scholar 

  27. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93

    Article  PubMed  CAS  Google Scholar 

  28. Edwards CA, Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19:281–289

    Article  PubMed  CAS  Google Scholar 

  29. Blewitt ME, Gendrel A-V, Pang Z, Sparrow DB, Whitelaw N, Craig JM, Apedaile A, Hilton DJ, Dunwoodie SL, Brockdorff N, Kay GF, Whitelaw E (2008) SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet 40:663–669

    Article  PubMed  CAS  Google Scholar 

  30. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97:1064–1073

    Article  PubMed  CAS  Google Scholar 

  31. Bogdarina IG, Haase A, Langley-Evans SC, Clark AJL (2010) Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat. PLoS One 5:e9237

    Article  PubMed  Google Scholar 

  32. Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hus JL, Lane RH (2003) Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 285:R962–R970

    PubMed  CAS  Google Scholar 

  33. Park JH, Stoffers DA, Nicholls RD, Simmons RA (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118:2316–2324

    Article  PubMed  CAS  Google Scholar 

  34. Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y, Jones RH, Marquez VE, Cairns W, Tadayyon M, O’Neill LP, Murrell A, Ling C, Constância M, Ozanne SE (2011) Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci USA 108:5449–5454

    Article  PubMed  CAS  Google Scholar 

  35. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    PubMed  CAS  Google Scholar 

  36. Bourque DK, Avila L, Peñaherrera M, von Dadelszen P, Robinson WP (2010) Decreased placental methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not preeclampsia. Placenta 31:197–202

    Article  PubMed  CAS  Google Scholar 

  37. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106

    Article  PubMed  Google Scholar 

  38. Radtke K, Ruf M, Gunter H, Dohrmann K, Schauer M, Meyer A, Elbert T (2011) Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry. doi:10.1038/tp.2011.21

  39. Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 3:19

    Article  PubMed  Google Scholar 

  40. Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  PubMed  CAS  Google Scholar 

  41. Weinberg J, Sliwowska JH, Lan N, Hellemans KG (2008) Prenatal alcohol exposure: foetal programming, the hypothalamic-pituitary-adrenal axis and sex differences in outcome. J Neuroendocrinol 20:470–488

    Article  PubMed  CAS  Google Scholar 

  42. Kaminen-Ahola N, Ahola A, Maga M, Mallitt KA, Fahey P, Cox TC, Whitelaw E, Chong S (2010) Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6:e1000811

    Article  PubMed  Google Scholar 

  43. Gray SP, Denton KM, Cullen-McEwen L, Bertram JF, Moritz KM (2010) Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J Am Soc Nephrol 21:1891–1902

    Article  PubMed  CAS  Google Scholar 

  44. Wlodek ME, Westcott K, Siebel AL, Owens JA, Moritz KM (2008) Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int 74:187–195

    Article  PubMed  Google Scholar 

  45. Unterberger A, Szyf M, Nathanielsz PW, Cox LA (2009) Organ and gestational age effects of maternal nutrient restriction on global methylation in fetal baboons. J Med Primatol 38:219–227

    Article  PubMed  CAS  Google Scholar 

  46. Bogdarina IG, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin–angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  PubMed  CAS  Google Scholar 

  47. Moritz KM, Johnson K, Douglas-Denton R, Wintour EM, Dodic M (2002) Maternal glucocorticoid treatment programs alterations in the renin-angiotensin system of the ovine fetal kidney. Endocrinology 143:4455–4463

    Article  PubMed  CAS  Google Scholar 

  48. Singh RR, Cullen-McEwen LA, Kett MM, Boon WM, Dowling J, Bertram JF, Moritz KM (2007) Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol (Lond) 579:503–513

    Article  CAS  Google Scholar 

  49. Moritz KM, Mazzuca MQ, Siebel AL, Mibus A, Arena D, Tare M, Owens JA, Wlodek ME (2009) Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency but no hypertension with ageing in female rats. J Physiol (Lond) 587:2635–2646

    Article  CAS  Google Scholar 

  50. Song R, Van Buren T, Yosypiv IV (2010) Histone deacetylases are critical regulators of the renin-angiotensin system during ureteric bud branching morphogenesis. Pediatr Res 67:573–578

    Article  PubMed  CAS  Google Scholar 

  51. Hoppe CC, Evans RG, Bertram JF, Moritz KM (2007) Effects of dietary protein restriction on nephr Moritz KM, Mazzuca MQ, Siebel AL on number in the mouse. Am J Physiol Regul Integr Comp Physiol 292:R1768–R1774

    Article  PubMed  CAS  Google Scholar 

  52. Grigore D, Ojeda NB, Robertson EB, Dawson AS, Huffman CA, Bourassa EA, Speth RC, Brosnihan KB, Alexander BT (2007) Placental insufficiency results in temporal alterations in the renin angiotensin system in male hypertensive growth restricted offspring. Am J Physiol Regul Integr Comp Physiol 293:R804–R811

    Article  PubMed  CAS  Google Scholar 

  53. Nijland MJ, Mitsuya K, Li C, Ford S, McDonald TJ, Nathanielsz PW, Cox LA (2010) Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. J Physiol (Lond) 588:1349–1359

    Article  CAS  Google Scholar 

  54. Constância M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Steward F, Kelsey G, Fowden A, Sibley C, Reik W (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 417:945–948

    Article  PubMed  Google Scholar 

  55. Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36:889–893

    Article  PubMed  CAS  Google Scholar 

  56. Schneid H, Seurin D, Vazquez MP, Gourmelen M, Cabrol S, Le Bouc Y (1993) Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith-Wiedemann syndrome. J Med Genet 30:353–362

    Article  PubMed  CAS  Google Scholar 

  57. Steenman MJ, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP (1994) Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nat Genet 7:433–439

    Article  PubMed  CAS  Google Scholar 

  58. Haycock PC, Ramsay M (2009) Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol Reprod 81:618–627

    Article  PubMed  CAS  Google Scholar 

  59. Drake AJ, Walker BR, Seckl JR (2005) Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am J Physiol Regul Integr Comp Physiol 288:R34–R38

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Moritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Sullivan, L., Little, M.H., Combes, A.N. et al. Epigenetics and developmental programming of adult onset diseases. Pediatr Nephrol 27, 2175–2182 (2012). https://doi.org/10.1007/s00467-012-2108-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-012-2108-x

Keywords

Navigation