Skip to main content
Log in

HLA epitope matching in pediatric renal transplantation

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Chronic graft loss due to antibody-mediated rejection (AMR) and the difficulty of re-transplanting highly sensitized patients are two of the major long-term challenges in pediatric renal transplantation. Treatments for AMR are often ineffective and desensitization protocols can be a high risk, making prevention a highly appealing strategy. Insights into the structural determinants of humoral alloantigenicity present an exciting opportunity to reassess our current paradigm of tissue matching and potentially preventing these complications. We review the theory behind human leukocyte antigen (HLA) B cell epitopes and the various systems that have been proposed to define them, including eplets. There is a growing body of clinical evidence suggesting that epitope-based tissue matching may be superior to traditional HLA antigen matching at predicting a range of clinical outcomes. However, additional studies are required to better understand the biological relevance of these systems of defining epitopes and their role in pediatric transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

cPRA:

Calculated panel reactive antibody

DSA:

Donor-specific antibody

ESKD:

End-stage kidney disease

HLA:

Human leukocyte antigen

References

  1. ANZDATA Registry. 38th Report, Chapter 8: Transplantation (2015) [cited 2016 Oct 03]. Available at: http://www.anzdata.org.au/v1/report_2015.html

  2. Arias M, Rush DN, Wiebe C, Gibson IW, Blydt-Hansen TD, Nickerson PW, Sellarés J, López-Hoyos M, San Segundo D, Crespo-Leiro M, Marzoa-Rivas R, Barge-Caballero E, Paniagua-Martín M, Román A, Serón D, Böhmig G, Schwaiger E (2014) Antibody-mediated rejection: analyzing the risk, proposing solutions. Transplantation 98:S3–S21

    Article  CAS  PubMed  Google Scholar 

  3. Everly MJ, Rebellato LM, Haisch CE, Ozawa M, Parker K, Briley KP, Catrou P, Bolin P, Kendrick W, Kendrick S, Harland R, Terasaki P (2013) Incidence and impact of de novo donor-specific alloantibody in primary renal allografts. Transplantation 95:410–417

    Article  CAS  PubMed  Google Scholar 

  4. Kim JJ, Balasubramanian R, Michaelides G, Wittenhagen P, Sebire NJ, Mamode N, Shaw O, Vaughan R, Marks S (2014) The clinical spectrum of de novo donor-specific antibodies in pediatric renal transplant recipients. Am J Transplant 14:2350–2358

    Article  CAS  PubMed  Google Scholar 

  5. Cai J, Terasaki PI (2008) Post-transplantation antibody monitoring and HLA antibody epitope identification. Curr Opin Immunol 20:602–606

    Article  CAS  PubMed  Google Scholar 

  6. Fichtner A, Süsal C, Höcker B, Rieger S, Waldherr R, Westhoff JH, Sander A, Opelz G, Tonshoff B (2016) Association of C1q-fixing DSA with late graft failure in pediatric renal transplant recipients. Pediatr Nephrol 31:1157–1166

    Article  PubMed  Google Scholar 

  7. Foster BJ, Dahhou M, Zhang X, Platt RW, Smith JM, Hanley JA (2014) Impact of HLA mismatch at first kidney transplant on lifetime with graft function in young recipients. Am J Transplant 14:876–885

    Article  CAS  PubMed  Google Scholar 

  8. Gralla J, Tong S, Wiseman AC (2013) The impact of human leukocyte antigen mismatching on sensitization rates and subsequent retransplantation after first graft failure in pediatric renal transplant recipients. Transplantation 95:1218–1224

    Article  CAS  PubMed  Google Scholar 

  9. Rees L, Kim JJ (2015) HLA sensitisation: can it be prevented? Pediatr Nephrol 30:577–587

    Article  PubMed  Google Scholar 

  10. Djamali A, Kaufman DB, Ellis TM, Zhong W, Matas A, Samaniego M (2014) Diagnosis and management of antibody-mediated rejection: current status and novel approaches. Am J Transplant 14:255–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roberts DM, Jiang SH, Chadban SJ (2012) The treatment of acute antibody-mediated rejection in kidney transplant recipients—a systematic review. Transplantation 94:775–783

    Article  CAS  PubMed  Google Scholar 

  12. Mamode N, Marks SD (2016) Desensitization protocols for prospective pediatric renal transplant recipients. Pediatr Nephrol 31:1549–1551

    Article  PubMed  Google Scholar 

  13. Terasaki PI, Vredevoe DL, Porter KA, Mickey MR, Marchioro TL, Faris TD, Herrmann J, Starzl T (1966) Serotyping for homotransplantation. V. Evaluation of a matching scheme. Transplantation 4:688–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams RC, Opelz G, Mcgarvey CJ, Weil EJ, Chakkera HA (2016) The risk of transplant failure with HLA mismatch in first adult kidney allografts from deceased donors. Transplantation 100:1094–1102

    Article  CAS  PubMed  Google Scholar 

  15. HLA Nomenclature [Internet]. [cited 2016 Sep 29]. Available from: http://hla.alleles.org/nomenclature/stats.html

  16. Duquesnoy RJ, Awadalla Y, Lomago J, Jelinek L, Howe J, Zern D, Hunter B, Martell J, Girnita A, Zeevi A (2008) Retransplant candidates have donor-specific antibodies that react with structurally defined HLA-DR, DQ, DP epitopes. Transpl Immunol 18:352–360

    Article  CAS  PubMed  Google Scholar 

  17. Duquesnoy RJ (2002) HLAMatchmaker: a molecularly based algorithm for histocompatibility determination. I. Description of the algorithm. Hum Immunol 63:339–352

    Article  CAS  PubMed  Google Scholar 

  18. Wiebe C, Nickerson P (2014) Acceptable mismatching at the class II epitope level: the Canadian experience. Curr Opin Organ Transplant 19:442–446

    Article  CAS  PubMed  Google Scholar 

  19. Tambur AR, Claas FHJ (2013) Toward HLA epitope matching in clinical transplantation. Am J Transplant 13:3059–3060

    Article  CAS  PubMed  Google Scholar 

  20. Filippone EJ, Farber JL (2015) Humoral immunity in renal transplantation: epitopes, Cw and DP, and complement-activating capability—an update. Clin Transplant 29:279–287

    Article  PubMed  Google Scholar 

  21. Davies DR, Padlan EA, Sheriff S (1990) Antibody-antigen complexes 1. Annu Rev Biochem 59:439–473

    Article  CAS  PubMed  Google Scholar 

  22. MacCallum RM, Martin AC, Thornton JM (1996) Antibody–antigen interactions: contact analysis and binding site topography. J Mol Biol 262:732–745

    Article  CAS  PubMed  Google Scholar 

  23. Cunningham BC, Wells J (1993) Comparison of a structural and a functional epitope. J Mol Biol 234:554–563

    Article  CAS  PubMed  Google Scholar 

  24. Mylvaganam SE, Paterson Y, Getzoff ED (1998) Structural basis for the binding of an anti-cytochrome c antibody to its antigen: crystal structures of FabE8-cytochrome c complex to 1.8 A resolution and FabE8 to 2.26 A resolution. J Mol Biol 281:301–322

    Article  CAS  PubMed  Google Scholar 

  25. Hülsmeyer M, Chames P, Hillig RC, Stanfield RL, Held G, Coulie PG, Alings C, Wille G, Saenger W, Uchanska-Ziegler B, Hoogenboom H, Ziegler A (2005) A major histocompatibility complex-peptide-restricted antibody and T cell receptor molecules recognize their target by distinct binding modes: crystal structure of human leukocyte antigen (HLA)-A1-MAGE-A1 in complex with Fab-Hyb3. J Biol Chem 280:2972–2980

    Article  PubMed  Google Scholar 

  26. Duquesnoy RJ (2006) A structurally based approach to determine HLA compatibility at the humoral immune level. Hum Immunol 67:847–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Regenmortel MH (2009) What is a B-cell epitope? Methods Mol Biol 524:3–20

    Article  PubMed  Google Scholar 

  28. Stave JW, Lindpaintner K (2013) Antibody and antigen contact residues define epitope and paratope size and structure. J Immunol 191:1428–1435

    Article  CAS  PubMed  Google Scholar 

  29. Mallon DH, Bradley JA, Taylor CJ, Kosmoliaptsis V (2014) Structural and electrostatic analysis of HLA B-cell epitopes: inference on immunogenicity and prediction of humoral alloresponses. Curr Opin Organ Transplant 19:420–427

    Article  CAS  PubMed  Google Scholar 

  30. El-Awar N, Lee JH, Tarsitani C, Terasaki PI (2007) HLA class I epitopes: recognition of binding sites by mAbs or eluted alloantibody confirmed with single recombinant antigens. Hum Immunol 68:170–180

    Article  CAS  PubMed  Google Scholar 

  31. El-Awar NR, Akaza T, Terasaki PI, Nguyen A (2007) Human leukocyte antigen class I epitopes: update to 103 total epitopes, including the C locus. Transplantation 84:532–540

    Article  CAS  PubMed  Google Scholar 

  32. El-Awar N, Terasaki PI, Cai J, Deng CT, Ozawa M, Nguyen A, Lias M CN (2009) Chapter 24: Epitopes of HLA-A, B, C, DR, DQ, DP and MICA antigens. Clin Transpl 2009:295–321. Published by Terasaki Research Institute.

  33. HLA Epitope Registry [Internet]. [cited 2016 Oct 24]. Available from: http://epregistry.ufpi.br/index/databases/database/ABC/

  34. Duquesnoy RJ, Marrari M, Sousa L, Barroso J, Aita K, da Silva AS, do Monte SJ (2013) 16th IHIW: a website for the antibody-defined HLA epitope registry. Int J Immunogenet 40:54–59

    CAS  PubMed  Google Scholar 

  35. Duquesnoy RJ, Marrari M (2009) Correlations between Terasaki’s HLA class i epitopes and HLAMatchmaker-defined eplets on HLA-A, -B and -C antigens. Tissue Antigens 74:117–133

    Article  CAS  PubMed  Google Scholar 

  36. Organ Procurement and Transplantation Network cPRA Calculator [Internet]. 2016 [cited 2016 Oct 24]. Available from: https://optn.transplant.hrsa.gov/resources/allocation-calculators/cpra-calculator/

  37. Duquesnoy RJ, Marrari M, Mulder A, da Mata Sousa LCD, da Silva AS, do Monte SJH (2014) First report on the antibody verification of HLA-ABC epitopes recorded in the website-based HLA Epitope Registry. Tissue Antigens 83:391–400

    Article  CAS  PubMed  Google Scholar 

  38. Duquesnoy RJ, Marrari M, Tambur AR, Mulder A, da Mata Sousa LCD, da Silva AS, do Monte SJ (2014) First report on the antibody verification of HLA-DR, HLA-DQ and HLA-DP epitopes recorded in the HLA Epitope Registry. Hum Immunol 75:1097–1103

    Article  CAS  PubMed  Google Scholar 

  39. Duquesnoy RJ (2014) Human leukocyte antigen epitope antigenicity and immunogenicity. Curr Opin Organ Transplant 19:428–435

    Article  CAS  PubMed  Google Scholar 

  40. Kosmoliaptsis V, Chaudhry AN, Sharples LD, Halsall DJ, Dafforn TR, Bradley JA, Taylor C (2009) Predicting HLA class I alloantigen immunogenicity from the number and physiochemical properties of amino acid polymorphisms. Transplantation 88:791–798

    Article  CAS  PubMed  Google Scholar 

  41. Mallon DH, Bradley JA, Winn PJ, Taylor CJ, Kosmoliaptsis V (2015) Three-dimensional structural modelling and calculation of electrostatic potentials of HLA Bw4 and Bw6 epitopes to explain the molecular basis for alloantibody binding: toward predicting HLA antigenicity and immunogenicity. Transplantation 99:4–9

    Article  Google Scholar 

  42. Duquesnoy RJ (2012) The antibody response to an HLA mismatch: a model for nonself-self discrimination in relation to HLA epitope immunogenicity. Int J Immunogenet 39:1–9

    Article  CAS  PubMed  Google Scholar 

  43. Duquesnoy RJ (2011) Humoral alloimmunity in transplantation: relevance of HLA epitope antigenicity and immunogenicity. Front Immunol 2:8–13

    Article  Google Scholar 

  44. Lobashevsky AL, Senkbeil RW, Shoaf JL, Stephenson AK, Skelton SB, Burke RM, Deierhoi M, Thomas JM (2002) The number of amino acid residues mismatches correlates with flow cytometry crossmatching results in high PRA renal patients. Hum Immunol 63:364–374

    Article  CAS  PubMed  Google Scholar 

  45. Duquesnoy RJ, Takemoto S, de Lange P, Doxiadis IIN, Schreuder GMT, Persijn GG, Claas FHJ (2003) HLAmatchmaker: a molecularly based algorithm for histocompatibility determination. III. Effect of matching at the HLA-A, B amino acid triplet level on kidney transplant survival. Transplantation 75:884–889

    Article  CAS  PubMed  Google Scholar 

  46. Heidt S, Witvliet MD, Haasnoot GW, Claas FHJ (2015) The 25th anniversary of the Eurotransplant Acceptable Mismatch program for highly sensitized patients. Transpl Immunol 33:51–57

    Article  PubMed  Google Scholar 

  47. Dankers MKA, Witvliet MD, Roelen DL, De Lange P, Korfage N, Persijn GG, Duquesnoy R, Doxiadis I, Claas FHJ (2004) The number of amino acid triplet differences between patient and donor is predictive for the antibody reactivity against mismatched human leukocyte antigens1. Transplantation 77:1236–1239

    Article  CAS  PubMed  Google Scholar 

  48. Wiebe C, Pochinco D, Blydt-Hansen TD, Ho J, Birk PE, Karpinski M, Goldberg A, Storsley L, Gibson I, Rush D, Nickerson P (2013) Class II HLA epitope matching—a strategy to minimize de novo donor-specific antibody development and improve outcomes. Am J Transplant 13:3114–3122

    Article  CAS  PubMed  Google Scholar 

  49. Wiebe C, Nevins TE, Robiner WN, Thomas W, Matas AJ, Nickerson PW (2015) The synergistic effect of class II HLA epitope-mismatch and nonadherence on acute rejection and graft survival. Am J Transplant 15:2197–2202

    Article  CAS  PubMed  Google Scholar 

  50. Sapir-Pichhadze R, Tinckam K, Quach K, Logan AG, Laupacis A, John R, Beyene J, Kim SJ (2015) HLA-DR and -DQ eplet mismatches and transplant glomerulopathy: a nested case-control study. Am J Transplant 15:137–148

    Article  CAS  PubMed  Google Scholar 

  51. Kosmoliaptsis V, Mallon DH, Chen Y, Bolton EM, Bradley AJ, Taylor CJ (2016) Alloantibody responses after renal transplant failure can be better predicted by donor–recipient HLA amino acid sequence and physicochemical disparities than conventional HLA matching. Am J Transplant 16:2139–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh P, Filippone EJ, Colombe BW, Shah AP, Zhan T, Harach M, Gorn C, Frank AM (2016) Sensitization trends after renal allograft failure: the role of DQ eplet mismatches in becoming highly sensitized. Clin Transplant 30:71–80

    Article  CAS  PubMed  Google Scholar 

  53. Walton DC, Hiho SJ, Cantwell LS, Diviney MB, Wright ST, Snell GI, Paraskeva M, Westall G (2016) HLA matching at the eplet level protects against chronic lung allograft dysfunction. Am J Transplant 16:2695–2703

    Article  CAS  PubMed  Google Scholar 

  54. Sullivan PM, Warner P, Kemna MS, Albers EL, Law SP, Weiss NS, Law YM (2015) HLA molecular epitope mismatching and long-term graft loss in pediatric heart transplant recipients. J Hear Lung Transplant 34:950–957

    Article  Google Scholar 

  55. Sapir-Pichhadze R, Tinckam KJ, Laupacis A, Logan AG, Beyene J, Kim SJ (2016) Immune sensitization and mortality in wait-listed kidney transplant candidates. J Am Soc Nephrol 27:570–578

    Article  PubMed  Google Scholar 

  56. Redfield RR, Scalea JR, Zens TJ, Mandelbrot DA, Leverson G, Kaufman DB, Djamali A (2016) The mode of sensitization and its influence on allograft outcomes in highly sensitized kidney transplant recipients. Nephrol Dial Transplant 10:1746–1753

    Article  Google Scholar 

  57. Marfo K, Lu A, Ling M, Akalin E (2011) Desensitization protocols and their outcome. Clin J Am Soc Nephrol 6:922–936

    Article  PubMed  Google Scholar 

  58. Sypek M, Alexander S, Cantwell L, Ierino F, Ferrari P, Walker A, Kausman JY (2016) Optimizing outcomes in pediatric renal transplantation through the Australian Paired Kidney Exchange Program. Am J Transplant. doi:10.1111/ajt.14041

    PubMed  Google Scholar 

  59. Ferrari P, Cantwell L, Ta J, Woodroffe C, DʼOrsogna L, Holdsworth R (2016) Providing better-matched donors for HLA mismatched compatible pairs through kidney paired donation. Transplantation. doi:10.1097/TP.0000000000001196

    PubMed Central  Google Scholar 

  60. Agarwal S, Oak N, Siddique J, Harland RC, Abbo ED (2009) Changes in pediatric renal transplantation after implementation of the revised deceased donor kidney allocation policy. Am J Transplant 9:1237–1242

    Article  CAS  PubMed  Google Scholar 

  61. Bryan CF, Chadha V, Warady BA (2016) Donor selection in pediatric kidney transplantation using DR and DQ eplet mismatching: a new histocompatibility paradigm. Pediatr Transplant 20:926–930

    Article  CAS  PubMed  Google Scholar 

  62. Kausman JY, Walker AM, Cantwell LS, Quinlan C, Sypek MP, Ierino FL (2016) Application of an epitope based allocation system in pediatric kidney transplantation. Pediatr Transplant 20:931–938

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Sypek.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Answers

1. c

2. b

3. e

4. c

Multiple-choice questions

Multiple-choice questions

  1. 1)

    Which of the following statements about HLA epitopes is incorrect:

    1. a)

      The same epitope present on two different HLA antigens can explain the cross-reactivity of an antibody that binds both antigens.

    2. b)

      Each HLA antigen contains multiple epitopes that can potentially bind anti-HLA antibody

    3. c)

      All members of an HLA serotype (e.g., HLA-A2) have the same amino acid sequence and therefore identical epitopes.

    4. d)

      HLA epitopes are defined as the region of the HLA antigen that binds to the paratope of an anti-HLA antibody

    5. e)

      The cluster of amino acid residues that plays a key role in determining antibody binding specificity is sometimes referred to as the ‘functional epitope’ region

  2. 2)

    Which of the following statements concerning HLA eplets is true?

    1. a)

      Eplets are defined as linear sequences of three amino acids on the surface of HLA molecules

    2. b)

      Eplets are clusters of amino acids that theoretically define the functional epitopes that determine HLA antibody binding specificity

    3. c)

      Eplets have been determined by antibody absorption/elution studies of serum containing anti-HLA antibodies

    4. d)

      Eplets are composed of 15–25 amino acid residues that bind to the paratope of an antibody

    5. e)

      Eplets typically cover an area of 650–900 Å2

  3. 3)

    Which one of the following has not been shown in clinical studies addressing the role of eplet mismatches in transplantation?

    1. a)

      The number of locus-specific class II eplet mismatches is predictive of HLA-DR and HLA-DQ de-novo DSA development post renal transplant

    2. b)

      HLA-DQ eplet mismatch of less than 17 is associated with low risk of locus-specific de novo DSA formation

    3. c)

      Class II eplet mismatch is associated with the development of transplant glomerulopathy

    4. d)

      Class I eplet mismatch > 10 in pediatric heart transplantation is associated with increased risk of graft failure compared with class I eplet mismatch < 10

    5. e)

      Class I eplet mismatch (highest vs. lowest quartile) in lung transplantation is associated with increased risk of chronic lung allograft dysfunction (CLAD).

  4. 4)

    Which of the following statements concerning pediatric renal transplantation is true?

    1. a)

      Eplet mismatch has been shown to be superior in predicting clinical outcomes compared to traditional HLA mismatch for pediatric patients receiving kidney transplants

    2. b)

      HLA matching in pediatric transplantation is not important as the developing immune system rapidly develops tolerance to foreign HLA

    3. c)

      Many children will require multiple transplants during their lives and therefore strategies to prevent HLA sensitization are important

    4. d)

      Deceased donor allocation policies that give priority to pediatric transplant recipients result in better histocompatibility matching for these patients

    5. e)

      Children with related potential donors should not enter paired kidney exchange programs, as this will result in poorer histocompatibility matching from unrelated paired donors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sypek, M.P., Hughes, P. & Kausman, J.Y. HLA epitope matching in pediatric renal transplantation. Pediatr Nephrol 32, 1861–1869 (2017). https://doi.org/10.1007/s00467-016-3557-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3557-4

Keywords

Navigation