Skip to main content

Advertisement

Log in

Radial growth resilience of sessile oak after drought is affected by site water status, stand density, and social status

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Tree resilience to drought was higher in drier sites and lower for suppressed trees grown in higher density stands, highlighting the role of acclimation and selection in tree responses to drought.

Abstract

Ongoing climate change will drive more frequent drought events in the future, with potential impacts on tree community structure and functioning. Growth responses of tree communities may depend on their past water status and on competition pressure. We investigated the effects of site water status, population density, and tree social status on tree growth resistance and resilience following the severe drought of 1976 in even-aged stands of sessile oak (Quercus petraea). We used retrospective growth data collected in permanent plots experiencing contrasted climatic and stand density conditions. We used boosted regression trees to calibrate a tree growth model over 1960–1975, which was then used to provide a baseline of expected tree growth following 1976. Growth dynamics during and after 1976 was examined using the ratio between observed and expected growths over 1976–1983. Tree radial growth was on average 0.6 times its expected values in 1976 and was still 0.63 times its expected value in 1977. Despite experiencing higher summer soil water deficit in 1976, trees growing in drier sites exhibited remarkably faster growth recovery than those in moister sites. Suppressed trees grown in higher density stands recovered their normal growth rate slower than dominant trees. Forest growth is evidenced to be more vulnerable to drought in moister than in drier sites. Competitive pressures also alter tree capacity to recover from a severe drought, accelerating suppression of smaller trees in high-density stands. These results highlight the role of acclimation and selection processes in tree community responses to present and future climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aertsen W, Kint V, van Orshoven J, Özkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221:1119–1130. doi:10.1016/j.ecolmodel.2010.01.007

    Article  Google Scholar 

  • Allen CD et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi:10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Aussenac G, Granier A (1988) Effects of thinning on water-stress and growth in douglas-fir. Can J For Res Rev Can Rech For 18:100–105

    Article  Google Scholar 

  • Berdanier AB, Clark JS (2016) Multiyear drought-induced morbidity preceding tree death in southeastern US forests. Ecol Appl 26:17–23. doi:10.1890/15-0274

    Article  PubMed  Google Scholar 

  • Bigler C, Gavin DG, Gunning C, Veblen TT (2007) Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116:1983–1994

    Article  Google Scholar 

  • Bolte A, Rahmann T, Kuhr M, Pogoda P, Murach D, Kv Gadow (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies[L.] Karst.). Plant Soil 264:1–11. doi:10.1023/B:PLSO.0000047777.23344.a3

    Article  CAS  Google Scholar 

  • Bréda N, Badeau V (2008) Forest tree responses to extreme drought and some biotic events: towards a selection according to hazard tolerance? CR Geosci 340:651–662. doi:10.1016/j.crte.2008.08.003

    Article  Google Scholar 

  • Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306. doi:10.1093/treephys/15.5.295

    Article  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (eds) (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Cavin L, Mountford EP, Peterken GF, Jump AS (2013) Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct Ecol 27:1424–1435. doi:10.1111/1365-2435.12126

    Article  Google Scholar 

  • Coudun C, Gégout JC, Piedallu C, Rameau JC (2006) Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. J Biogeogr 33:1750–1763. doi:10.1111/j.1365-2699.2005.01443.x

    Article  Google Scholar 

  • D’Amato AW, Bradford JB, Fraver S, Palik BJ (2013) Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol Appl 23:1735–1742. doi:10.1890/13-0677.1

    Article  PubMed  Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Global Planet Change 60:289–305. doi:10.1016/j.gloplacha.2007.03.004

    Article  Google Scholar 

  • De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251. doi:10.1890/0012-9658(2007)88[243:btfema]2.0.co;2

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J Forest Res 124:319–333. doi:10.1007/s10342-005-0085-3

    Article  Google Scholar 

  • Eilmann B, de Vries SMG, den Ouden J, Mohren GMJ, Sauren P, Sass-Klaassen U (2013) Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances. For Ecol Manage 302:133–143. doi:10.1016/j.foreco.2013.03.031

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. doi:10.1111/j.1365-2656.2008.01390.x

    Article  CAS  PubMed  Google Scholar 

  • Enquist BJ (2002) Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol 22:1045–1064

    Article  PubMed  Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. 1189–1232. doi:10.1214/aos/1013203451

  • Friedman JH, Meulman JJ (2003) Multiple additive regression trees with application in epidemiology. Stat Med 22:1365–1381. doi:10.1002/sim.1501

    Article  PubMed  Google Scholar 

  • Friedrichs DA, Buntgen U, Frank DC, Esper J, Neuwirth B, Loffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol 29:39–51. doi:10.1093/treephys/tpn003

    Article  PubMed  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Galiano L, Martínez-Vilalta J, Lloret F (2011) Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 year after a drought episode. New Phytol 190:750–759. doi:10.1111/j.1469-8137.2010.03628.x

    Article  CAS  PubMed  Google Scholar 

  • Gutschick VP, BassiriRad H (2003) Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol 160:21–42. doi:10.1046/j.1469-8137.2003.00866.x

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2013) Dismo: species distribution modeling with R. R package 'dismo', version 1.0-12. https://cran.r-project.org/web/packages/dismo/dismo.pdf. Accessed Oct 2015

  • IFN (2013) Inventaire Forestier National. Le mémento 2013 edn. http://inventaire-forestier.ign.fr/spip/IMG/pdf/memento_2013.pdf. Accessed Oct 2015

  • Jansen K, Sohrt J, Kohnle U, Ensminger I, Gessler A (2013) Tree ring isotopic composition, radial increment and height growth reveal provenance-specific reactions of Douglas-fir towards environmental parameters. Trees 27:37–52. doi:10.1007/s00468-012-0765-9

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate-change experiments: events, not trends. Front Ecol Environ 5:365–374. doi:10.1890/1540-9295(2007)5[365:angoce]2.0.co;2

  • Kint V, Vansteenkiste D, Aertsen W, De Vos B, Bequet R, Van Acker J, Muys B (2012) Forest structure and soil fertility determine internal stem morphology of Pedunculate oak: a modelling approach using boosted regression trees. Eur J Forest Res 131:609–622. doi:10.1007/s10342-011-0535-z

    Article  Google Scholar 

  • Koeble R, Seufert G (2001) Novel maps for forest tree species in Europe. In: Proceedings of the 8th European symposium on the physiochemical behavior of air pollutants: “a changing atmosphere” Torino, Italy

  • Kohler M, Sohn J, Nagele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J Forest Res 129:1109–1118. doi:10.1007/s10342-010-0397-9

    Article  Google Scholar 

  • Le Goff N, Ottorini JM (2001) Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France. Ann For Sci 58:1–13

    Article  Google Scholar 

  • Le Goff N, Ottorini JM, Ningre F (2011) Evaluation and comparison of size-density relationships for pure even-aged stands of ash (Fraxinus excelsior L.), beech (Fagus silvatica L.), oak (Quercus petraea Liebl.), and sycamore maple (Acer pseudoplatanus L.). Ann For Sci 68:461–475. doi:10.1007/s13595-011-0052-8

    Article  Google Scholar 

  • Lebourgeois F, Cousseau G, Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill. stand in the Forest of Berce (“Futaie des Clos”, Sarthe, France). Ann For Sci 61:361–372. doi:10.1051/forest:2004029

    Article  Google Scholar 

  • Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manage 303:61–71. doi:10.1016/j.foreco.2013.04.003

    Article  Google Scholar 

  • Lebourgeois F, Eberlé P, Mérian P, Seynave I (2014) Social status-mediated tree-ring responses to climate of Abies alba and Fagus sylvatica shift in importance with increasing stand basal area. For Ecol Manage 328:209–218. doi:10.1016/j.foreco.2014.05.038

    Article  Google Scholar 

  • Liu Y, Muller RN (1993) Effect of drought and frost on radial growth of overstory and understory stems in a deciduous forest. Am Midl Nat 129:19–25. doi:10.2307/2426431

    Article  Google Scholar 

  • Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–1920. doi:10.1111/j.1600-0706.2011.19372.x

    Article  Google Scholar 

  • Martin-Benito D, Cherubini P, del Rio M, Canellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees Struct Funct 22:363–373. doi:10.1007/s00468-007-0191-6

    Article  Google Scholar 

  • Martinez-Vilalta J, Lopez BC, Loepfe L, Lloret F (2012) Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168:877–888. doi:10.1007/s00442-011-2132-8

    Article  PubMed  Google Scholar 

  • McDowell NG, Adams HD, Bailey JD, Hess M, Kolb TE (2006) Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes. Ecol Appl 16:1164–1182. doi:10.1890/1051-0761(2006)016[1164:hmoppg]2.0.co;2

  • Merian P, Bontemps JD, Berges L, Lebourgeois F (2011) Spatial variation and temporal instability in climate-growth relationships of sessile oak (Quercus petraea Matt. Liebl.) under temperate conditions. Plant Ecol 212:1855–1871. doi:10.1007/s11258-011-9959-2

    Article  Google Scholar 

  • Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015) Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. For Ecol Manage 339:22–33. doi:10.1016/j.foreco.2014.11.032

    Article  Google Scholar 

  • Miller T, Kelman A (1966) Growth of Fomes annosus in roots of suppressed and dominant loblolly pines. For Sci 12:225–233

    Google Scholar 

  • Misson L, Antoine N, Joel G (2003) Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). For Ecol Manage 183:47–60. doi:10.1016/s0378-1127(03)00098-7

    Article  Google Scholar 

  • Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees Struct Funct 11:474–484

    Article  Google Scholar 

  • Oudin A (1930) Vues d’ensemble sur l’organisation en France des recherches de sylviculture et d’économie forestière. Les méthodes. Annales de l’école nationale des eaux et forêts et de la station de recherches et expériences 3:227–266

    Google Scholar 

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manage 242:688–699. doi:10.1016/j.foreco.2007.02.007

    Article  Google Scholar 

  • Piedallu C, Gegout JC, Bruand A, Seynave I (2011) Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma 160:355–366. doi:10.1016/j.geoderma.2010.10.004

    Article  Google Scholar 

  • Piedallu C, Gégout JC, Perez V, Lebourgeois F (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Glob Ecol Biogeogr 22:470–482. doi:10.1111/geb.12012

    Article  Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  • Pretzsch H (2009) Forest dynamics, growth and yield: from measurement to model, Chapter 10. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Quintana-Seguí P et al (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol Climatol 47:92–107. doi:10.1175/2007jamc1636.1

    Article  Google Scholar 

  • Ridgeway G (2015) Generalized boosted regression models. R Package ‘gbm’, version 2.1-1. https://cran.r-project.org/web/packages/gbm/gbm.pdf. Accessed Oct 2015

  • Rinn F (2003) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. http://www.rinntech.de/images/stories/PDF/TSAPWin_brochure.pdf. Accessed Oct 2015

  • Rozenberg P (1993) Height growth of 12 Douglas-fir (Pseudotsuga-menziesii (Mirb) Franco) seed sources between 1 and 25 years old. Ann Des Sci For 50:363–381. doi:10.1051/forest:19930404

    Article  Google Scholar 

  • Schar C, Vidale PL, Luthi D, Frei C, Haberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447–455. doi:10.1007/s004420050397

    Article  PubMed  Google Scholar 

  • Sohn JA, Kohler M, Gessler A, Bauhus J (2012) Interactions of thinning and stem height on the drought response of radial stem growth and isotopic composition of Norway spruce (Picea abies). Tree Physiol 32:1199–1213. doi:10.1093/treephys/tps077

    Article  PubMed  Google Scholar 

  • Sohn JA, Gebhardt T, Ammer C, Bauhus J, Häberle KH, Matyssek R, Grams TEE (2013) Mitigation of drought by thinning: short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies). For Ecol Manage 308:188–197. doi:10.1016/j.foreco.2013.07.048

    Article  Google Scholar 

  • Sterl A et al (2008) When can we expect extremely high surface temperatures? Geophys Res Lett 35:L14703. doi:10.1029/2008gl034071

    Article  Google Scholar 

  • Sumida A, Miyaura T, Torii H (2013) Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol 33:106–118. doi:10.1093/treephys/tps127

    Article  PubMed  PubMed Central  Google Scholar 

  • Taeger S, Zang C, Liesebach M, Schneck V, Menzel A (2013) Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For Ecol Manage 307:30–42. doi:10.1016/j.foreco.2013.06.053

    Article  Google Scholar 

  • Team RDC (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0. http://www.R-project.org

  • Trouvé R, Bontemps JD, Collet C, Seynave I, Lebourgeois F (2014) Growth partitioning in forest stands is affected by stand density and summer drought in sessile oak and Douglas-fir. For Ecol Manage 334:358–368. doi:10.1016/j.foreco.2014.09.020

    Article  Google Scholar 

  • Vidal JP, Martin E, Franchistéguy L, Baillon M, Soubeyroux JM (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30:1627–1644. doi:10.1002/joc.2003

    Article  Google Scholar 

  • Vose JM, Swank WT (1994) Effects of long-term drought on the hydrology and growth of a white-pine plantation in the southern appalachians. For Ecol Manage 64:25–39. doi:10.1016/0378-1127(94)90124-4

    Article  Google Scholar 

  • Weiner J (1990) Asymmetric competition in plant populations. Trends Ecol Evol 5:360–364. doi:10.1016/0169-5347(90)90095-u

    Article  CAS  PubMed  Google Scholar 

  • Zang C, Pretzsch H, Rothe A (2012) Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees 26:557–569. doi:10.1007/s00468-011-0617-z

    Article  Google Scholar 

  • Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A (2014) Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Change Biol 20:3767–3779. doi:10.1111/gcb.12637

    Article  Google Scholar 

  • Zeide B (2003) The U-approach to forest modeling. Can J For Res 33:480–489. doi:10.1139/x02-175

    Article  Google Scholar 

Download references

Acknowledgements

The thesis Grant of Raphaël Trouvé was funded by the French National Forest Office and the French Ministry for Forests, Agriculture and Fisheries. Raphaël Trouvé was also funded by the French Research Agency (ANR) through the ’Oracle’ project (CEP&S call, 2010). We thank all workers that have been involved in setting up and maintaining the permanent research plot network and in the data collection. We also wish to thank Sébastien Daviller and Fabien Spicher for the retrospective data collection fieldwork, as well as Patrick Baker for comments on the manuscript. We thank two anonymous reviewers for their constructive comments which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Trouvé.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Roetzer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trouvé, R., Bontemps, JD., Collet, C. et al. Radial growth resilience of sessile oak after drought is affected by site water status, stand density, and social status. Trees 31, 517–529 (2017). https://doi.org/10.1007/s00468-016-1479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1479-1

Keywords

Navigation