Skip to main content
Log in

Differences in climate–growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Winter and spring wet and cool conditions often linked to El Niño enhance growth in five Mexican pine species which showed different responses to drought.

Abstract

Climate warming could intensify drought stress in NW México mountains as the Sierra Madre Occidental which are not only centers of pine diversification but also subject to a high hydroclimatic variability. In this region, rainfall and thus forest growth depend on changes in sea-surface temperatures (SST) across the equatorial Pacific related to the El Niño Southern Oscillation (ENSO). Winter moist-cool conditions usually correspond to El Niño episodes characterized by warm SSTs in the equatorial Pacific, whilst dry winters correspond to cold SSTs (La Niña). Consequently, growth responsiveness to dry spells could be used as a proxy of forest vulnerability to increased drought stress. Here, we characterize the growth responsiveness of five coexisting Mexican pine species to hydroclimate, drought, and the ENSO using dendrochronology. Pinus lumholtzii and P. durangensis showed a low responsiveness to maximum temperatures and drought, whereas others as P. arizonica, P. engelmannii, and P. leiophylla were very responsive. Among these drought-sensitive pine species, we found responses to ca. half- (e.g. P. engelmannii) and 1-year long (e.g. P. arizonica) droughts. The most responsive species to drought, P. arizonica and P. leiophylla, were also those showing a higher association between ENSO-related indices and growth. Wet and cool winter and spring conditions, linked to warm SSTs over the equatorial Pacific, were the main hydroclimate factors enhancing growth. Pine species presented different growth responsiveness to drought which suggests that they present diverse tolerances to water shortage. This implies that coexisting pine species will differently face the more arid conditions forecasted for many drought-prone areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams D, Comrie A (1997) The North American Monsoon. Am Meteorol Soc 78:2197–2213

    Article  Google Scholar 

  • Andrade ER, Sellers WD (1988) El Niño and its effect on precipitation in Arizona and western New Mexico. J Climatol 8:403–410

    Article  Google Scholar 

  • Barton AM (2002) Intense wildfire in southeastern Arizona: transformation of a Madrean oak–pine forest to oak woodland. For Ecol Manag 165:205–212

    Article  Google Scholar 

  • Barton AM, Swetnam TW, Baisan Ch (2001) Arizona pine (Pinus arizonica) stand dynamics: local and regional factors in a fire-prone madrean gallery forest of Southeast Arizona, USA. Landsc Ecol 16:351–369

    Article  Google Scholar 

  • Bickford IN, Fulé PZ, Kolb TE (2011) Growth sensitivity to drought of co-occurring Pinus spp. along an elevation gradient in northern Mexico. West N Am Nat 71:338–348

    Article  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. PNAS USA 102:15144–15148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480

    Article  PubMed  Google Scholar 

  • Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM (2015) To die or not to die: early-warning signals of dieback in response to a severe drought. J Ecol 103:44–57

    Article  CAS  Google Scholar 

  • Carvajal S, McVaugh R (1992) Pinus L., In: Flora Novo-Galiciana 17 (ed) R. McVaugh. Univ. Michigan Herbarium, Ann Arbor, pp 32–100

  • Cleaveland MK, Stahle DW, Therrell MD, Villanueva-Díaz J, Burns BT (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Clim Change 59:369–388

    Article  Google Scholar 

  • Cook ER, Holmes RL (1986) Users manual for program ARSTAN. In: Holmes RL, Adams RK, Fritts HC (eds) Tree-ring chronologies of western North America: California, eastern Oregon and northern Great Basin. Laboratory of Tree-Ring Research, Tucso, pp 50–65

  • Cook BI, Seager R (2013) The response of the North American Monsoon to increased greenhouse gas forcing. J Geophys Res Atmos 118:1690–1699

    Article  Google Scholar 

  • Díaz SC, Touchan R, Swetnam TW (2001) A tree-ring reconstruction of past precipitation for Baja California Sur, Mexico. Int J Climatol 21:1007–1019

    Article  Google Scholar 

  • Earle JC (2007) Gymnosperm database. http://www.conifers.org/. Accessed 17 May 2016

  • Farjon A (2010) A Handbook of the World’s Conifers. Brill, The Netherlands, p 1112

    Book  Google Scholar 

  • Farjon A, Styles BT (1997) Pinus (Pinaceae). Flora Neotropica Monograph 75. The New York Botanical Garden, USA, p 291

  • Figueroa-Rangel BL, Willis KJ, Olvera Vargas M (2008) 4200 years of pine-dominated upland forest dynamics in west-central Mexico: human or natural legacy? Ecology 89:1893–1907

    Article  PubMed  Google Scholar 

  • Fritts HC (2001) Tree rings and climate. Blackburn Press, USA, p 567

    Google Scholar 

  • Fulé PZ, Ramos-Gómez MA, Cortés Montaño C, Miller AM (2011) Fire regime in a Mexican forest under indigenous resource management. Ecol Appl 21:764–775

    Article  PubMed  Google Scholar 

  • Gernandt DS, Pérez de la Rosa JA (2014) Biodiversity of Pinophyta (conifers) in México. Rev Mex Biodivers 85:126–133

    Article  Google Scholar 

  • Gómez-Guerrero A, Silva LCR, Barrera-Reyes M, Kishchuk B, Velázquez-Martínez A, Martínez-Trinidad T, Plascencia-Escalante FO, Horwath WR (2013) Growth decline and divergent tree ring isotopic composition (δ13C and δ18O) contradict predictions of CO2 stimulation in high altitudinal forests. Global Change Biol 19:1748–1758

    Article  Google Scholar 

  • González-Elizondo M, Jurado E, Navar J, Gonzalez-Elizondo MS, Villanueva J, Aguirre O, Jiménez J (2005) Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: a 1681–2001 rain reconstruction. Forest Ecol Manag 213:39–53

    Article  Google Scholar 

  • González-Elizondo MS, González-Elizondo M, Tena-Flores JA, Ruacho-González L, López-Enríquez IL (2012) Vegetación de la Sierra Madre Occidental, México: Una síntesis. Act Bot Mexico 100:351–403

    Article  Google Scholar 

  • Grantz K, Rajagopalan B, Clark M, Zagona E (2007) Seasonal shifts in the North American monsoon. J Clim 20:1923–1935

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in treering dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Huang J, Tardif JC, Bergeron Y, Denneler B, Berninger F, Girardin MP (2010) Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Global Change Biol 16:711–731

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía-INEGI (2003) Conjunto de datos vectoriales de la carta de climas escala 1:1000000. http://www3.inegi.org.mx/sistemas/biblioteca/ficha.aspx?upc=702825267568. Accessed 25 March 2016

  • Kiladis GN, Díaz HF (1993) ENSO and precipitation variability over Mexico during the last 90 years. In: Redmon KT, Tharp VL (eds) Proceedings of the north annual Paclim climate (PACLIM) workshop. Asilomar, USA, California Department of Water Resources, pp 63–70

  • Liverman DM (1999) Vulnerability and adaptation to drought in Mexico. Nat Res J 29:99–115

    Google Scholar 

  • Magaña V, Perez JL, Vazquez JL, Carrizosa E, Perez J (1999) El Niño y el clima. In: Magaña V (ed) Los impactos de El Niño en México. CONACYT, México, pp 23–68

  • Martínez M (1948) Los Pinos Mexicanos, 2ª edn. Universidad Autónoma de México, México

    Google Scholar 

  • Martínez J, Fernández A (eds) (2004) Cambio climático: una visión desde México. Instituto Nacional de Ecología, México D.F.

    Google Scholar 

  • Martínez TT, Vargas HJJ, Muñoz OA, López UJ (2002) Respuesta al déficit hídrico de Pinus leiophylla: Consumo de agua y crecimiento en plántulas de diferentes poblaciones. Agrociencia 36:365–376

    Google Scholar 

  • Maseyk KS, Lin T, Rotenberg E, Grünzweig JM, Schwartz A, Yakir D (2008) Physiology–phenology interactions in a productive semi-arid pine forest. New Phytol 178:603–616

    Article  CAS  PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Meko DM, Touchan R, Anchukaitis KJ (2011) Seascorr: a MATLAB program for identifying the seasonal climate signal in an annual tree-ring time series. Comput Geosci 34:1234–1241

    Article  Google Scholar 

  • Pasho E, Camarero JJ, Vicente-Serrano SM (2012) Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26:1875–1886

    Article  Google Scholar 

  • Perry JP (1991) The pines of Mexico and Central America. Timber Press, Portland

    Google Scholar 

  • Pompa-García M, Camarero JJ (2015) Reconstructing evaporation from pine tree rings in northern Mexico. Tree Ring Res 71:95–105

    Article  Google Scholar 

  • Pompa-García M, Némiga XA (2014) ENSO index teleconnection with seasonal precipitation in a temperate ecosystem of northern Mexico. Atmósfera 28:43–50

    Google Scholar 

  • Prieto-Ruiz JA, Cornejo Oviedo EH, Domínguez Calleros PA, Návar Chaidez JJ, Marmolejo Moncivais JG, Jiménez Pérez J (2004) Estrés hídrico en Pinus engelmannii Carr., producido en vivero. Inv Agr Sist Rec For 13:443–451

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin Southern Oscillation Index. Mon Weather Rev 115:2161–2165

    Article  Google Scholar 

  • Ruelas Monjardín LC, Dávalos Sotelo R (1999) La industria forestal en el estado de Chihuahua. Madera y Bosques 5:79–91

    Article  Google Scholar 

  • Rzedowski J (2006) Vegetación de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

    Google Scholar 

  • Sánchez-González A (2008) Una visión actual de la diversidad y distribución de los pinos de México. Madera y Bosques 14:107–120

    Article  Google Scholar 

  • Sarris D, Siegwolf R, Körner Ch (2013) Inter- and intra-annual stable carbon and oxygen isotope signals in response to drought in Mediterranean pines. Agric Forest Meteorol 168:59–68

    Article  Google Scholar 

  • Schulman E (1944) Dendrochronology in Mexico 1. Tree Ring Bull 10:18–24

    Google Scholar 

  • Seager R, Ting M, Davis M, Cane M, Naik N, Nakamura J, Li C, Cook ER, Stahle D (2009) Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera 22:1–31

    Google Scholar 

  • Stahle DW, Cleaveland MK (1993) Southern Oscillation extremes reconstructed from tree rings of the Sierra Madre Occidental and southern great plains. J Clim 6:129–140

    Article  Google Scholar 

  • Stahle DW, D’Arrigo RD, Krusic PJ, Cleaveland MK, Cook ER, Allan RJ, Cole JE, Dunbar RB, Therrell MD, Gay DA, Moore MD, Stokes MA, Burns BT, Villanueva-Diaz J, Thompson LG (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79:2137–2152

    Article  Google Scholar 

  • Stahle DW, Cook ER, Cleaveland MK, Therrell MD, Meko DM, Grissino Mayer HD, Watson E, Luckman BH (2000) Tree-ring data document 16th century megadrought over North America. Eos 81:121

    Article  Google Scholar 

  • Therrell M, Stahle D, Cleaveland M, Villanueva J (2002) Warm season tree growth and precipitation over Mexico. J Geophys Res 107:14–24

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of el Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32:L15701

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J Clim 23:1696–1718

    Article  Google Scholar 

  • Vieira J, Rossi S, Campelo F, Freitas H, Nabais C (2013) Seasonal and daily cycles of stem radial variation of Pinus pinaster in a drought-prone environment. Agric Forest Meteorol 180:173–181

    Article  Google Scholar 

  • Villanueva-Díaz D, Stahle DW, Cleaveland MK, Therrell MD (2000) Estado actual de la dendrocronología en México. Ciencia Forestal 25:5–36

    Google Scholar 

  • Villanueva-Díaz J, Cerano-Paredes J, Stahle DW, Luckman BH, Therrell MD, Cleaveland MK (2006) The climatic response of tree-ring chronologies in the Sierra Madre Occidental, Mexico. In: Symposium on climate change: organizing the science in the American Cordillera (Mendoza, Argentina), pp 91–92

  • Villanueva-Díaz J, Stahle DW, Luckman B, Cerano-Paredes J, Therrell MD, Cleaveland MK, Cornejo-Oviedo E (2007) Winter-spring precipitation reconstructions from tree rings for northeast México. Clim Change 83:117–131

    Article  Google Scholar 

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688

    Article  PubMed  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change 3:292–297

    Article  Google Scholar 

  • Yeaton RI (1982) The altitudinal distribution of the genus Pinus in the western United States and Mexico. Bol Soc Bot México 42:55–71

    Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support given by Consejo Nacional de Ciencia y Tecnología (CONACYT) through project 222522. We thank local forestry landowners for facilitating gathering field data. We also thank R. Sánchez-Salguero for his help with data analyses and the editors and two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marín Pompa-García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Cásares, M., Pompa-García, M. & Camarero, J.J. Differences in climate–growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees 31, 531–544 (2017). https://doi.org/10.1007/s00468-016-1488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1488-0

Keywords

Navigation