Skip to main content
Log in

Minimum wood density of conifers portrays changes in early season precipitation at dry and cold Eurasian regions

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Minimum wood density exhibits strong responses to precipitation and, thus, it is a robust proxy of early season water availability.

Abstract

Tracheids fulfil most wood functions in conifers (mechanical support and water transport) and earlywood tracheids account for most hydraulic conductivity within the annual tree ring. Dry conditions during the early growing season, when earlywood is formed, could lead to the formation of narrow tracheid lumens and a dense earlywood. Here, we assessed if there is a negative association between minimum wood density and early growing-season (spring) precipitation. Using dendrochronology, we studied growth and density data at nine forest stands of three Pinaceae species (Larix sibirica, Pinus nigra, and Pinus sylvestris) widely distributed in three cool–dry Eurasian regions from the forest-steppe (Russia, Mongolia) and Mediterranean (Spain) biomes. We measured for each annual tree ring and the common 1950–2002 period the following variables: earlywood and latewood width, and minimum and maximum wood density. As expected, dry early growing season (spring) conditions were associated with low earlywood production but, most importantly, to high minimum density in the three conifer species. The associations between minimum density and spring precipitation were stronger (r = −0.65) than those observed with earlywood width (r = 0.57). We interpret the relationship between spring water availability and high minimum density as a drought-induced reduction in lumen diameter, hydraulic conductivity, and growth. Consequently, forecasted growing-season drier conditions would translate into increased minimum wood density and reflect a reduction in hydraulic conductivity, radial growth, and wood formation. Given the case-study-like nature of this work, more research on other cold–dry sites with additional conifer species is needed to test if minimum wood density is a robust proxy of early season water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7:214–219

    Article  Google Scholar 

  • Block J, Magda VN, Vaganov EA (2004) Temporal and spatial variability of tree growth in mountain forest steppe in Central Asia. In: Trace, Proceedings of the Dendrosymposium, vol 2, pp 46–53. Utrecht, Netherlands, May the 1st–3rd, 2003

  • Bouche PS, Larter M, Domec JC, Burlett R, Gasson P, Jansen S, Delzon S (2014) A broad survey of hydraulic and mechanical safety in the xylem of conifers. J Exp Bot 65:4419–4431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouriaud O, Leban J, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce Intra-annual variations in climate influence growth and wood density. Tree Physiol 25:651–660

    Article  CAS  PubMed  Google Scholar 

  • Bouriaud O, Teodosiu M, Kirdyanov AV, Wirth C (2015) Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences 12:6205–6217

    Article  CAS  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682

    Article  CAS  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Planet Chang 40:11–26

    Article  Google Scholar 

  • Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124

    Article  Google Scholar 

  • Bunn A, Korpela M, Biondi F, Campelo F, Mérian P, Qeadan F, Zang C (2016) dplR: Dendrochronology Program Library in R. R package version 1.6.4. https://CRAN.R-project.org/package=dplR

  • Büntgen U, Frank D, Trouet V, Esper J (2010) Diverse climate sensitivity of Mediterranean tree-ring width and density. Trees 24:261–273

    Article  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480

    Article  PubMed  Google Scholar 

  • Camarero JJ, Rozas V, Olano JM (2014) Minimum wood density of Juniperus thurifera is a robust proxy of spring water availability in a continental Mediterranean climate. J Biogeogr 41:1105–1114

    Article  Google Scholar 

  • Camarero JJ, Gazol A, Tardif JC, Conciatori F (2015) Attributing forest responses to global-change drivers: limited evidence of a CO2-fertilization effect in Iberian pine growth. J Biogeogr 42:2220–2233

    Article  Google Scholar 

  • Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkeley

    Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Cleaveland MK (1986) Climatic response of densitometric properties in semiarid site tree rings. Tree-Ring Bull 46:13–29

    Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental science. Kluwer, Dordrecht

    Book  Google Scholar 

  • Dalla-Salda G, Martínez-Mier A, Cochard H, Rozenberg P (2009) Variation of wood density and hydraulic properties of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones related to a heat and drought wave in France. For Ecol Manage 257:182–189

    Article  Google Scholar 

  • De Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J 28:389–404

    Article  Google Scholar 

  • Devi N, Hagedorn F, Moiseev P, Bugmann H, Shiyatov S, Mazepa V, Rigling A (2008) Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century. Glob Chang Biol 14:1581–1591

    Article  Google Scholar 

  • Domec JC, Warren JM, Meinzer FC, Lachenbruch B (2009) Safety factors for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA J 30:101–120

    Article  Google Scholar 

  • Dulamsuren Ch, Hauck M, Bader M, Osokhjargal D, Oyungerel S, Nyambayar S, Runge M, Leuschner C (2009) Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia. Tree Physiol 29:99–110

    Article  PubMed  Google Scholar 

  • Dulamsuren Ch, Hauck M, Leuschner C (2010) Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Glob Chang Biol 16:3024–3035

    Google Scholar 

  • Dylis NV (1961) Larch in Eastern Siberia and the Far East: variation and natural diversity (in russian). Akad. Nauk SSSR, Moscow

    Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Pannatier EG, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771

    Article  CAS  PubMed  Google Scholar 

  • Esper J, Frank D, Büntgen U, Verstege A, Hantemirov RM, Kirdyanov AV (2010) Trends and uncertainties in Siberian indicators of 20th century warming. Global Chang Biol 16:386–398

    Article  Google Scholar 

  • Fajardo A (2016) Wood density is a poor predictor of competitive ability among individuals of the same species. For Ecol Manage 372:217–225

    Article  Google Scholar 

  • Fritts HC (2001) Tree rings and climate. Caldwell, New York

    Google Scholar 

  • Galván DJ, Büntgen U, Ginzler C, Grudd H, Gutiérrez E, Labuhn I, Camarero JJ (2015) Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines. Glob Planet Chang 124:95–106

    Article  Google Scholar 

  • Gimeno TE, Camarero JJ, Granda E, Pías B, Valladares F (2012) Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought. Tree Physiol 32:326–336

    Article  CAS  PubMed  Google Scholar 

  • Gindl W (2001) Cell-wall lignin content related to tracheid dimensions in drought-sensitive Austrian pine (Pinus nigra). IAWA J 22:113–120

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 14:409–414

    Article  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  PubMed  Google Scholar 

  • Hacke UG, Lachenbruch B, Pittermann J, Mayr S, Domec JC, Schulte PJ (2015) The hydraulic architecture of conifers. In: Hacke UG (ed) Functional and ecological xylem anatomy. Springer, Berlin, Heidelberg, pp 39–75

    Google Scholar 

  • Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain Eng 108:225–230

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Jyske T, Hölttä T, Mäkinen H, Nöjd P, Lumme I, Spiecker H (2010) The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol 30:103–115

    Article  PubMed  Google Scholar 

  • Kirdyanov AV, Hughes MK, Vaganov EA, Schweingruber F, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in Siberian Subarctic. Trees 17:61–69

    Article  Google Scholar 

  • Kirdyanov AV, Vaganov EA, Hughes MK (2007) Separating the climatic signal from tree-ring width and maximum latewood density records. Trees 21:37–44

    Article  Google Scholar 

  • Knorre AA, Siegwolf RTW, Saurer M, Sidorova OV, Vaganov EA, Kirdyanov AV (2010) Twentieth century trends in tree ring stable isotopes (δ13C and δ18O) of Larix sibirica under dry conditions in the forest steppe in Siberia. J Geophys Res Biogeosci 115:G03002

    Article  Google Scholar 

  • Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24:701–705

    Article  Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer, New York

    Book  Google Scholar 

  • Lundgren C (2004) Microfibril angle and density patterns of fertilized and irrigated Norway spruce. Silva Fenn 38:107–117

    Google Scholar 

  • Mäkinen H, Hynynen J (2014) Wood density and tracheid properties of Scots pine: responses to repeated fertilization and timing of the first commercial thinning. Forestry 87:437–447

    Article  Google Scholar 

  • Martín JA, Esteban LG, de Palacios P, Fernández FG (2010) Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees 24:1017–1028

    Article  Google Scholar 

  • Martín-Benito D, Cherubini P, Del Río M, Cañellas I (2008) Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22:363–373

    Article  Google Scholar 

  • Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen J, Llorens P, Nikinmaa E, Nolè A, Poyatos R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184:353–364

    Article  PubMed  Google Scholar 

  • Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36:20–32

    Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. University of Chicago Press, Chicago

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan

  • Olivar J, Rathgeber C, Bravo F (2015) Climate change, tree-ring width and wood density of pines in Mediterranean environments. IAWA J 36:257–269

    Article  Google Scholar 

  • Pacheco A, Camarero JJ, Carrer M (2016) Linking wood anatomy and xylogenesis allows pinpointing of climate and drought influences on growth of coexisting conifers in continental Mediterranean climate. Tree Physiol 36:502–512

    Article  PubMed  Google Scholar 

  • Pasho E, Camarero JJ, Vicente-Serrano SM (2012) Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26:1875–1886

    Article  Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Env 29:1618–1628

    Article  Google Scholar 

  • Polge H (1978) Fifteen years of wood radiation densitometry. Wood Sci Technol 12:187–196

    Article  Google Scholar 

  • Poulter B, Pederson N, Liu H, Zhu Z, D’Arrigo R, Ciais P, Davi N, Frank D, Leland C, Myneni R, Piao S, Wang T (2013) Recent trends in inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178–179:31–45

    Article  Google Scholar 

  • R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Richardson DM (1998) Ecology and biogeography of pinus. Cambridge University Press, Cambridge

    Google Scholar 

  • Ruiz Diaz Britez M, Sergent A-S, Martinez Meier A, Bréda N, Rozenberg P (2014) Wood density proxies of adaptive traits linked with resistance to drought in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Trees 28:1289–1304

    Article  Google Scholar 

  • Sánchez-Salguero R, Camarero JJ, Hevia A, Madrigal-González J, Linares JC, Ballesteros-Canovas JA, Sánchez-Miranda A, Alfaro-Sánchez R, Sangüesa-Barreda S, Galván JD, Gutiérrez E, Génova M, Rigling A (2015) What drives growth of Scots pine in continental Mediterranean climates: drought, low temperatures or both? Agric For Meteorol 206:151–162

    Article  Google Scholar 

  • Sangüesa-Barreda G, Camarero JJ, García-Martín A, Hernández R, de la Riva J (2014) Remote-sensing and tree-ring based characterization of forest defoliation and growth loss due to the Mediterranean pine processionary moth. For Ecol Manage 320:171–181

    Article  Google Scholar 

  • Shestakova TA, Gutiérrez E, Kirdyanov AV, Camarero JJ, Génova M, Knorre AA, Linares JC, Resco de Dios V, Sánchez-Salguero R, Voltas J (2016) Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. PNAS 113:662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treter U (2000) Stand structure and growth patterns of the larch forests of Western Mongolia—a dendrochronological approach. Geowiss Abh Reihe A 205:60–66

    Google Scholar 

  • Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67:1–110

    Google Scholar 

  • Vaganov EA, Kirdyanov AV (2010) Dendrochronology of larch trees growing on Siberian permafrost. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds) Permafrost ecosystems: Siberian Larch forests, ecological studies, vol 209. Springer, Heidelberg, pp 347–363

    Chapter  Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151

    Article  CAS  Google Scholar 

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of past and future environments. Springer, Berlin, Heidelberg

    Google Scholar 

  • Vaganov EA, Schulze ED, Skomarkova MV, Knohl A, Brand WA, Roscher C (2009) Intra-annual variability of anatomical structure and δ13C values within tree rings of spruce and pine in alpine, temperate and boreal Europe. Oecologia 161:729–745

    Article  PubMed  PubMed Central  Google Scholar 

  • Velisevich SN, Kozlov DS (2006) Effects of temperature and precipitation on radial growth of Siberian Larch in ecotopes with optimal, insufficient, and excessive soil moistening. Russ J Ecol 37:241–246

    Article  Google Scholar 

  • Wan X, Zwiazek JJ, Lieffers VJ, Landhäusser SM (2001) Hydraulic conductance in aspen (Populus tremuloides) seedlings exposed to low root temperatures. Tree Physiol 21:691–696

    Article  CAS  PubMed  Google Scholar 

  • Yasue K, Funada R, Kobayashi O, Ohtani J (2000) The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees 14:223–229

    Article  Google Scholar 

  • Zhang SB, Ferry Silk JW, Zhang JL, Cao KF (2011) Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Glob Ecol Biogeogr 20:241–250

    Article  Google Scholar 

  • Zobel BJ, van Buijtenen JP (1989) Wood variation. Its causes and control. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Spanish Ministry of Economy Projects (Fundiver, CGL2015-69186-C2-1-R). Tree-ring density data were obtained and analysed under support of Russian Science Foundation (Project 14-14-00295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Julio Camarero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by E. Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camarero, J.J., Fernández-Pérez, L., Kirdyanov, A.V. et al. Minimum wood density of conifers portrays changes in early season precipitation at dry and cold Eurasian regions. Trees 31, 1423–1437 (2017). https://doi.org/10.1007/s00468-017-1559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1559-x

Keywords

Navigation