Skip to main content
Log in

Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

This study reinforces the existence of the leaf economics spectrum in Mediterranean woody species, and demonstrates the strong influence of phylogeny, leaf habit and environmental context as main drivers of variability in structural and nutrient traits of leaves.

Abstract

Leaf structural and nutrient traits are key attributes of plant ecological strategies, as these traits are related to resource-use strategies and plant growth. However, leaf structure and nutrient composition can vary among different habitats, leaf habits or phylogenetic groups. In this study, we measured 13 leaf traits (one structural—leaf mass per area, LMA—and 12 nutrient traits) in 98 Mediterranean woody species growing over a wide range of environmental conditions, with the final aim of discerning the main causes of leaf trait variability. The variance decomposition results show that phylogeny, leaf habit and habitat type affected in several ways the structural and nutrient traits studied. Leaf nutrient concentrations are strongly positively correlated amongst themselves, and negatively correlated with LMA, in accordance with the “leaf economics spectrum”. We found that leaf habit and phylogeny were important causes of variation in LMA and in a broad number of leaf nutrients (i.e., C, N, Mg, S, K), while other micronutrients seemed to be more dependent on the environment (i.e., Cu and Mn). In summary, our study reinforces the existence of the leaf economics spectrum in a broad pool of Mediterranean woody species, and demonstrates the strong influence of phylogeny, leaf habit and environmental context as the main drivers of variability in some leaf structural and nutrient traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ågren GI (2008) Stoichiometry and nutrition of plant growth in natural communities. ‎Annu Rev Ecol Evol 39:153–170

    Article  Google Scholar 

  • Antúnez I, Retamosa EC, Villar R (2001) Relative growth rate in phylogenetically related deciduous and evergreen woody species. Oecologia 128:172–180

    Article  PubMed  Google Scholar 

  • Asner GP, Martin RE, Tupayachi R, Anderson CB, Sinca F, Carranza-Jiménez L, Martinez P (2014) Amazonian functional diversity from forest canopy chemical assembly. PNAS 111:5604–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auger S, Shipley B (2013) Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J Veg Sci 24:419–428

    Article  Google Scholar 

  • Axelrod DI (1966) Origin of deciduous and evergreen habits in temperate forests. Evolution 20:1–15

    Article  PubMed  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy—metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant (No. 205)

  • Chen FS, Niklas KJ, Zeng DH (2011) Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant Soil 340:337–345

    Article  CAS  Google Scholar 

  • Ciccarelli D, Picciarelli P, Bedini G, Sorce C (2016) Mediterranean sea cliff plants: morphological and physiological responses to environmental conditions. J Plant Ecol 9:153–164

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R (2016a) Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PloS One 11:e0148788

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Riva EG, Tosto A, Pérez-Ramos IM, Navarro-Fernández CM, Olmo M, Anten NP, Villar R (2016b) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27:187–199

    Article  Google Scholar 

  • de la Riva EG, Pérez-Ramos IM, Tosto A, Navarro-Fernández CM, Olmo M, Marañón T, Villar R (2016c) Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos 125:354–363

    Article  Google Scholar 

  • de la Riva EG, Marañon T, Violle C, Villar R, Pérez-Ramos IM (2017) Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01242

    Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A et al (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676

    Article  CAS  PubMed  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JH et al (2016) The global spectrum of plant form and function. Nature 529(7585):167–171

    Article  PubMed  Google Scholar 

  • Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2010) Nutritional status of Mediterranean trees growing in a contaminated and remediated area. Water Air Soil Pollut 205:305–321

    Article  Google Scholar 

  • Domínguez MT, Aponte C, Pérez-Ramos IM, García LV, Villar R, Marañón T (2012) Relationships between leaf morphological traits, nutrient concentrations and isotopic signatures for Mediterranean woody plant species and communities. Plant Soil 357:407–424

    Article  Google Scholar 

  • Egilla JN, Davies FT, Boutton TW (2005) Drought stress influences leaf water content, photosynthesis, and water-use-efficiency of Hibiscus rosasinensis at three potassium concentrations. Photosynthetica 43:135–140

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • European Commission (2013) Interpretation manual of European Union Habitats—EUR28

  • Funk JL, Cornwell WK (2013) Leaf traits within communities: context may affect the mapping of traits to function. Ecology 94:1893–1897

    Article  PubMed  Google Scholar 

  • Fyllas NM, Patino S, Baker TR et al (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708

    Article  Google Scholar 

  • Gelman A, Hill J (2006) Data analysis using regression and multi- level/hierarchical models. Cambridge University Press, Cambridge, p 648

    Book  Google Scholar 

  • Gower JC (1963) Variance component estimation for unbalanced hierarchical classifications. Biometrics 18:537–542

    Article  Google Scholar 

  • Grubb PJ, Marañón T, Pugnaire FI, Sack L (2015) Relationships between specific leaf area and leaf composition in succulent and non-succulent species of contrasting semi-desert communities in south-eastern Spain. J Arid Environ 118:69–83

    Article  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14:788–796

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Kudla J (2011) Calcium decoding mechanisms in plants. Biochimie 93:2054–2059

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2008) Comparative community physiology: nonconvergence in water relations among three semi-arid shrub communities. New Phytol 180:100–113

    Article  PubMed  Google Scholar 

  • Jenny H (1950) Causes if the high nitrogen and organic matter content of certain tropical forest soils. Soil Sci 69:63–69

    Article  CAS  Google Scholar 

  • Knecht MF, Göransson A (2004) Terrestrial plants require nutrients in similar proportions. Tree Physiol 24:447–460

    Article  CAS  PubMed  Google Scholar 

  • Koerselman W, Meuleman AFM (1994) Groeibeperkende voedingsstoffen in verschillende typen duinvalleien; resultaten van bemestingsexperimenten. Kiwa N.V. Research and Consultancy, Nieuwegein

    Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  PubMed Central  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  • Lefcheck JS (2015) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Article  Google Scholar 

  • Marañón T, Navarro-Fernández CM, Domínguez MT, Madejón P, Murillo JM (2015) How the soil chemical composition is affected by seven tree species planted at a contaminated and remediated site. Web Ecol 15:45–48

    Article  Google Scholar 

  • Mayland HF (1990) Magnesium in plants: uptake, distribution, function, and utilization by man and animals. Metal ions in biological systems: volume 26: compendium on magnesium and its role in biology: nutrition and physiology, pp 26–33

  • McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Article  Google Scholar 

  • Messier J, McGill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecol Lett 13:838–848

    Article  PubMed  Google Scholar 

  • Navarro-Fernández CM, Pérez-Ramos IM, de la Riva EG et al (2016) Functional responses of Mediterranean plant communities to soil resource heterogeneity: a mycorrhizal trait-based approach. J Veg Sci 27:1243–1253. https://doi.org/10.1111/jvs.12446

    Article  Google Scholar 

  • Niinemets Ü, Kull K (2003) Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees. Acta Oecol 24:209–219

    Article  Google Scholar 

  • Niinemets U, Sack L (2006) Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. Progress Bot 67:385–419

    CAS  Google Scholar 

  • Pärtel M, Laanisto L, Zobel M (2007) Constructing plant productivity–diversity relationships across latitude: the role of evolutionary history. Ecology 88:1091–1097

    Article  PubMed  Google Scholar 

  • Peñuelas J, Sardans J, Ogaya R, Estiarte M (2008) Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol J Ecol 56:613–622

    Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Austral J Bot 61:167–234

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) nlme: linear and nonlinear mixed effects models. R package version 3.1–121. http://CRAN.R-project.org/package=nlme

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87:1733–1743

    Article  PubMed  Google Scholar 

  • Poorter H, de Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction cost of field plants from 15 habitats differing in productivity. New Phytol 143:163–176

    Article  CAS  Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559

    Article  PubMed  Google Scholar 

  • Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition and construction costs. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 39–72

    Chapter  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team R (2011) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org. Accessed 31 Jan 2011

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. PNAS 94:13730–13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relation- ships: a test across six habitats. Ecology 80:1955–1969

    Article  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc B 277:877–883

    Article  CAS  PubMed  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Article  Google Scholar 

  • Sardans J, Peñuelas J (2015) Trees increase their P:N ratio with size. Glob Ecol Biogeogr 24:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2011) Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). Forest Ecol Manag 262:2024–2034

    Article  Google Scholar 

  • Sardans J, Janssens IA, Alonso R et al (2015) Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob Ecol Biogeogr 24:240–255

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1997) Mechanisms of plant competition. Plant ecology, Second edn. Blackwell Science, Oxford

    Google Scholar 

  • Townsend AR, Cleveland CC, Asner GP, Bustamante M (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–118

    Article  PubMed  Google Scholar 

  • Urbina I, Sardans J, Beierkuhnlein C et al (2015) Shifts in the elemental composition of plants during a very severe drought. Environ Expl Bot 111:63–73

    Article  CAS  Google Scholar 

  • Verdú M, Pausas JG (2013) Syndrome driven diversification in a Mediterranean ecosystem. Evolution 67:1756–1766

    Article  PubMed  Google Scholar 

  • Villar R, Merino JA (2001) Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol 151:213–226

    Article  Google Scholar 

  • Villar R, Ruíz-Robleto J, De Jong Y, Poorter H (2006) Differences in construction costs and chemical composition between deciduous and evergreen woody species are small as compared to differences among families. Plant Cell Environ 29:1629–1643

    Article  CAS  PubMed  Google Scholar 

  • Villar R, Ruíz-Robleto J, Ubera JL, Poorter H (2013) Exploring variation in leaf mass per area (LMA) from leaf to cell: an anatomical analysis of 26 woody species. Am J Bot 100:1969–1980

    Article  PubMed  Google Scholar 

  • Vitousek P, Howarth R (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • Warton DI, Duursma RA, Falster DS, Taskinen S (2012) Smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol Evol 3:257–259

    Article  Google Scholar 

  • Watanabe T, Broadley MR, Jansen S, White PJ, Takada J, Satake K, Takamatsu T, Tuah SJ, Osaki M (2007) Evolutionary control of leaf element composition in plants. New Phytol 174:516–523

    Article  CAS  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15:423–434

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Elser JJ, He N, Wu H, Chen Q, Zhang G, Han X (2011) Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia 166:1–10

    Article  PubMed  Google Scholar 

  • Yuan Z, Chen HY (2009) Global trends in senesced-leaf nitrogen and phosphorus. Glob Ecol Biogeogr 18:532–542

    Article  Google Scholar 

  • Zhao N, Yu G, He N, Wang Q et al (2016) Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Glob Ecol Biogeogr 25:359–367

    Article  Google Scholar 

  • Zunzunegui M, Barradas MD, Ain-Lhout F, Clavijo A, Novo FG (2005) To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Navarro-Fernández, M. Olmo, C. Aponte, M. Domínguez and A. Herrero for their help in the sampling and processing of leaves. Dr. David Walker revised the English. This study was funded by the Spanish MEC coordinated project DIVERBOS (CGL2011-30285-C02-01 and C02-02), the Andalusian ANASINQUE project (PGC2010-RNM-5782), the Life + Biodehesa Project (11/BIO/ES/000726), ECO-MEDIT (CGL2014-53236-R), RESTECO (CGL2014-52858-R) and European FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique G. de la Riva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by T. Koike.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 563 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Riva, E.G., Villar, R., Pérez-Ramos, I.M. et al. Relationships between leaf mass per area and nutrient concentrations in 98 Mediterranean woody species are determined by phylogeny, habitat and leaf habit. Trees 32, 497–510 (2018). https://doi.org/10.1007/s00468-017-1646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-017-1646-z

Keywords

Navigation