Skip to main content
Log in

A semiparametric class of axially symmetric random fields on the sphere

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The paper provides a way to model axially symmetric random fields defined over the two-dimensional unit sphere embedded in the three-dimensional Euclidean space. Specifically, our strategy is to integrate an isotropic random field on the sphere over longitudinal arcs with a given central angle. The resulting random field is shown to be axially symmetric and to have the arc central angle as a tuning parameter that allows for isotropy as well as for longitudinal independence as limit cases. We then consider multivariate longitudinally integrated random fields, having the same properties of axial symmetry and a tuning parameter (arc central angle) proper to each random field component. This construction allows for a unified framework for vector-valued random fields that can be geodesically isotropic, axially symmetric, or longitudinally independent. Additionally, all the components of the vector random field are allowed to be cross-correlated. We finally show how to simulate the proposed axially symmetric scalar and vector random fields through a computationally efficient algorithm that exactly reproduces the desired covariance structure and provides approximately Gaussian finite-dimensional distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alegría A, Cuevas F, Diggle P, Porcu E (2018) A family of covariance functions for random fields on spheres. Research Report 08, 2018, Centre for Stochastic Geometry and Advanced Bioimaging

  • Alegría A, Porcu E, Furrer R, Mateu J (2019) Covariance functions for multivariate Gaussian fields evolving temporally over planet Earth. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-019-01707-w

    Article  Google Scholar 

  • Anh V, Broadbridge P, Olenko A, Wang Y (2018) On approximation for fractional stochastic partial differential equations on the sphere. Stoch Environ Res Risk Assess 32(9):2585–2603

    Article  Google Scholar 

  • Arfken G, Weber HJ (2005) Math Methods Phys, 6th edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Castruccio S, Genton MG (2014) Beyond axial symmetry: an improved class of models for global data. Stat 3(1):48–55

    Article  Google Scholar 

  • Clarke J, Alegría A, Porcu E (2018) Regularity properties and simulations of gaussian random fields on the sphere cross time. Electron J Stat 12:399–426

    Article  Google Scholar 

  • Daley DJ, Porcu E (2013) Dimension walks and Schoenberg spectral measures. Proc Am Math Soc 141:1813–1824

    Google Scholar 

  • Edwards M, Castruccio S, Hammerling D (2019) A multivariate global spatio-temporal stochastic generator for climate ensembles. J Agric Biol Environ Sci 24(3):464–483

    Article  Google Scholar 

  • Emery X, Porcu E (2019) Simulating isotropic vector-valued Gaussian random fields on the sphere through finite harmonics approximations. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-019-01717-8

    Article  Google Scholar 

  • Gneiting T (1999) Correlation functions for atmospheric data analysis. Q J R Meteorol Soc Part A 125(559):2449–2464

    Article  Google Scholar 

  • Gneiting T (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4):1327–1349

    Article  Google Scholar 

  • Guinness J, Fuentes M (2016) Isotropic covariance functions on spheres: some properties and modeling considerations. J Multivar Anal 143:143–152

    Article  Google Scholar 

  • Hannan E (2009) Multiple time series. Wiley series in probability and statistics. Wiley, Hoboken

    Google Scholar 

  • Heaton M, Katzfuss M, Berrett C, Nychka D (2014) Constructing valid spatial processes on the sphere using kernel convolutions. Environmetrics 25(1):2–15

    Article  Google Scholar 

  • Hitczenko M, Stein ML (2012) Some theory for anisotropic processes on the sphere. Stat Methodol 9:211–227

    Article  Google Scholar 

  • Jeong J, Jun M, Genton M (2017) Spherical process models for global spatial statistics. Stat Sci 32(4):501–513

    Article  Google Scholar 

  • Jones RH (1963) Stochastic processes on a sphere. Ann Inst Math Stat 34:213–218

    Article  Google Scholar 

  • Jun M, Stein ML (2007) An approach to producing space-time covariance functions on spheres. Technometrics 49:468–479

    Article  Google Scholar 

  • Jun M, Stein ML (2008) Nonstationary covariance models for global data. Ann Appl Stat 2(4):1271–1289

    Article  Google Scholar 

  • Lang A, Schwab C (2015) Isotropic gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations. Ann Appl Probab 25(6):3047–3094

    Article  Google Scholar 

  • Lantuéjoul C, Freulon X, Renard D (2019) Spectral simulation of isotropic gaussian random fields on a sphere. Math Geosci. https://doi.org/10.1007/s11004-019-09799-4

  • Li Y, Zhu Z (2016) Modeling nonstationary covariance function with convolution on sphere. Comput Stat Data Anal 104:233–246

    Article  Google Scholar 

  • Marinucci D, Peccati G (2011) Random fields on the sphere, representation, limit theorems and cosmological applications. Cambridge University Press, New York

    Book  Google Scholar 

  • Perón A, Porcu E, Emery X (2018) Admissible nested covariance models over spheres cross time. Stoch Environ Res Risk Assess 32(11):3053–3066

    Article  Google Scholar 

  • Porcu E, Alegría A, Furrer R (2018) Modeling temporally evolving and spatially globally dependent data. Int Stat Rev 86:344–377

    Article  Google Scholar 

  • Porcu E, Castruccio S, Alegria A, Crippa P (2019) Axially symmetric models for global data: a journey between geostatistics and stochastic generators. Environmetrics 1–15 (in press)

  • Schoenberg IJ (1942) Positive definite functions on spheres. Duke Math J 9(1):96–108

    Article  Google Scholar 

  • Stein ML (2007a) Spatial variation of total column ozone on a global scale. Ann Appl Stat 1:191–210

    Article  Google Scholar 

  • Stein ML (2007b) Spatial variation of total column ozone on a global scale. Ann Appl Stat 1(1):191–210

    Article  Google Scholar 

  • Terzaghi R (1965) Sources of error in joint surveys. Geotechnique 5(3):287–305

    Article  Google Scholar 

  • Vanlengenberg C, Wang W, Zhang H (2019) Data generation for axially symmetric processes on the sphere. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2019.1588309

  • Yaglom AM (1987) Correlation theory of stationary and related random functions. Basic results, vol I. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of grants CONICYT/FONDECYT/REGULAR/No. 1170290 (XE and EP) and AMTC AFB180004 PIA CONICYT (XE) from the Chilean Commission for Scientific and Technological Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Emery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emery, X., Porcu, E. & Bissiri, P.G. A semiparametric class of axially symmetric random fields on the sphere. Stoch Environ Res Risk Assess 33, 1863–1874 (2019). https://doi.org/10.1007/s00477-019-01725-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-019-01725-8

Keywords

Navigation