Skip to main content
Log in

Species response curves of oak species along climatic gradients in Turkey

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The genus Quercus is one of the most important tree species in Turkey. However, little is known on the ecological preferences of Turkish oak species regarding climate. We analyzed species response curves using a HOF-model approach to describe the general pattern of oak distributions along climatic gradients and to identify the driving climatic factors for eight oak species in Turkey. While climate data were extracted from the free available worldclim dataset, occurrence data on oak species were assembled from the literature into a vegetation database (n = 1,104). From the analyzed species response curves, only fa ew (16%) showed unimodal responses, while most were linear (31%) or exhibited a threshold response (31%). The driving factors were seasonality of temperature and seasonality of precipitation, indicating that Turkish oak species can be characterized best by the preference of climatic stability. These findings have important implications for conservation and climate change research, which usually focuses on trends of the mean values of temperature or precipitation but less often on the seasonality. In this study, we further tested whether niche optima derived from raw mean values of occurrences could replace missing model optima due to non-responsiveness of HOF models of type I. However, we did not find this to be a satisfactory solution. Finally, we discuss the need for the construction of a national database based on phytosociological relevés for Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adıgüzel N, Vural M (1995) Soğuksu Milli Parkı (Ankara) vejetasyonu. Turk J Bot 19:213–234

    Google Scholar 

  • Akman Y, Barbero M, Quezel P (1978) Contribution a l’etude de la vegetation forestiere d’Anatolie mediterraneenne. Phytocoenologia 5:1–79

    Google Scholar 

  • Akman Y, İlarslan R (1983) The Phytosociological investigation in the district of Uluhan-Mudurnu. Com de la Fac Sci Ank C5(1):55–70

    Google Scholar 

  • Austin MP (1980) Searching for a model for use in vegetation analysis. Vegetatio 42:11–21

    Article  Google Scholar 

  • Austin MP (1987) Models for the analysis of species response to environmental gradients. Vegetatio 69:35–45

    Article  Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35–47

    Article  Google Scholar 

  • Austin MP, Nicholls AO, Doherty MD, Meyers JA (1994) Determining species response functions to an environmental gradient by means of a β-Function. J Veg Sci 5:215–228

    Article  Google Scholar 

  • Babaç MT (2004) Possibility of an information system on plants of South-West Asia with particular reference to the Turkish Plants Data Service (TÜBIVES). Turk J Bot 28:119–227

    Google Scholar 

  • Barbero M, Loisel R, Quézel P (1992) Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Plant Ecol 99–100:19–34

    Article  Google Scholar 

  • Bartha D (1998) Quercus frainetto Ten. 1813. In: Schütt P, Schuck HJ, Aas G, Lang UM (eds) Enzyklopädie der Holzgewächse, 11edn. Wiley, Weinheim, pp 1–8

    Google Scholar 

  • Borelli S, Varela MC (2000) EUFORGEN Mediterranean Oaks Network: Report of the first meeting. Antalya, Turkey

    Google Scholar 

  • Bozzano M, Turok J. (2002) EUFORGEN Mediterranean Oaks Network: Second Meeting. 2–4 May 2002, Gozo, Malta

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Camus A. (1934–1954) Les chenes: Monographie du genre Quercus (et Lithocarpus). Encyclopedie Economique de Sylviculture, Academie des Sciences, Paris.

  • Chytrý M, Danihelka J, Kubešová S, Lustyk P, Ermakov N, Hájek M, Hájková P, Kočí M, Otýpková Z, Roleček J, Řezníčková M, Šmarda P, Valachovič M, Popov D, Pišút I (2008) Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecol 196:61–83

    Article  Google Scholar 

  • Çolak A, Rotherham I (2006) A review of the forest vegetation of Turkey: its Status Past and Present and its Future Conservation. Proc R Ir Acad B 106:343–354

    Article  Google Scholar 

  • Dengler J, Steering Committee GIVD (2010) GIVD, a new ecological metadatabase. Front Biogeogr 2:70

    Google Scholar 

  • Dufour-Dror JM, Ertaş A (2004) Bioclimatic perspectives in the distribution of Quercus ithaburensis Decne. subspecies in Turkey and in the Levant. J Biogeogr 31:461–474

    Article  Google Scholar 

  • Flemons P, Guralnick R, Krieger J, Ranipeta A, Neufeld D (2007) A web-based GIS tool for exploring the world’s biodiversity: The global biodiversity information facility mapping and analysis portal application (GBIF-MAPA). Ecol Inform 2:49–60

    Article  Google Scholar 

  • Fotelli MN, Radoglou KM, Constantinidou HIA (2000) Water stress responses of seedlings of four Mediterranean oak species. Tree Physiol 20:1065–1075

    CAS  Google Scholar 

  • Gauch HG, Whittaker RH (1972) Coenocline simulation. Ecology 53:446–451

    Article  Google Scholar 

  • Hennekens SM, Schaminée JHJ (2001) TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci 12:589–591

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Huisman J, Olff H, Fresco LFM (1993) A hierarchical set of models for species response analysis. J Veg Sci 4:37–46

    Article  Google Scholar 

  • Jansen F (2008a) Shape of species responses: Huisman-Olff-Fresco models revisited. In: Mucina L, Kalwij JM, Smith VR, Chytrý M, White PS, Cilliers SS, Pillar VD, Zobel M, Sun I-F (eds) Frontiers of Vegetation Science—An Evolutionary Angle. Keith Phillips Images, Somerset West, p 2

    Google Scholar 

  • Jansen F. (2008b) vegdata.dev: Vegetation data access and evaluation. http://geobot.botanik.uni-greifswald.de/download, Accessed 15 March 2010.

  • Kalusová V, Le Duc MG, Gilbert JC, Lawson CS, Gowing DJ, Marrs RH (2009) Determining the important environmental variables controlling plant species community composition in mesotrophic grasslands in Great Britain. Appl Veg Sci 12:459–471

    Article  Google Scholar 

  • Kargioğlu M, Senkul C, Serteser A, Konuk M (2009) Bioclimatic requirements of Quercus vulcanica (Boiss Et Heldr. Ex) Kotschy—an endemic species in Turkey. Pol J Ecol 57:197–200

    Google Scholar 

  • Kaya Z, Raynal DJ (2001) Biodiversity and conservation of Turkish forests. Biol Conserv 97:131–141

    Article  Google Scholar 

  • Ketenoğlu O, Tug GN, Bingol U, Geven F, Kurt L, Guney K (2010) Synopsis of syntaxonomy of Turkish forests. J Environ Biol 31:71–80

    Google Scholar 

  • Kotschy T. (1858–1862) Die Eichen Europas und des Orients. Wien-Olmütz.

  • Lawesson JE, Oksanen J (2002) Niche characteristics of Danish woody species as derived from coenoclines. J Veg Sci 13:279–290

    Article  Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  Google Scholar 

  • Mayer H, Aksoy H (1986) Wälder der Türkei. Fischer, Stuttgart

    Google Scholar 

  • Menitsky YL (1984) Oaks of Asia. Leningosed Sciences, St. Petersburg

    Google Scholar 

  • Nakao K, Matsui T, Horikawa M, Tsuyama I, Tanaka N (2010) Assessing the impact of land use and climate change on the evergreen broad-leaved species of Quercus acuta in Japan. Plant Ecol. doi:10.1007/s11258-010-9817-7

    Google Scholar 

  • Navarro T, Alados CL, Cabezudo B (2006) Changes in plant functional types in response to goat and sheep grazing in two semi-arid shrublands of SE Spain. J Arid Environ 64:298–322

    Article  Google Scholar 

  • Normand S, Treier UA, Randin C, Vittoz P, Guisan A, Svenning JC (2009) Importance of abiotic stress as a range-limit determinant for European plants: Insights from species responses to climatic gradients. Global Ecol Biogeogr 18:437–449

    Article  Google Scholar 

  • Oksanen J, Minchin PR (2002) Continuum theory revisited: what shape are species responses along ecological gradients? Ecol Model 157:119–129

    Article  Google Scholar 

  • Özel N. (2002) Country report: Turkey. In: Bozzano M. and Turok J. (eds), Mediterranean Oaks Network, Report of the second meeting, 2–4 May 2002. International Plant Genetic Resources Institute, Rome, Italy., Gozo, Malta, pp. 48–50.

  • Özen F (2010) Yeniköy (Bursa) Higrofil, Orman ve Maki Vejetasyonunun Sinekolojik ve Sintaksonomik Analizi. Ekoloji 19:50–64

    Article  Google Scholar 

  • Peppler-Lisbach C (2008) Using species-environmental amplitudes to predict pH values from vegetation. J Veg Sci 19:437–434

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rydgren K, Økland RH, Økland T (2003) Species response curves along environmental gradients. A case study from SE Norwegian swamp forests. J Veg Sci 14:869–880

    Article  Google Scholar 

  • Sariş F, Hannah DM, Eastwood WJ (2010) Spatial variability of precipitation regimes over Turkey. Hydrolog Sci J 55:234–249

    Article  Google Scholar 

  • Schaminée JHJ, Hennekens SM, Chytrý M, Rodwell JS (2009) Vegetation-plot data and databases in Europe: an overview. Preslia 81:173–185

    Google Scholar 

  • Schwarz O (1936) Entwurf zu einem natürlichen system der cupuliferen und der Gattung Quercus L. Notizbl Bot Gart Mus Berlin-Dahlem 8:1–22

    Article  Google Scholar 

  • Schwarz O (1937) Monographie der Eichen Europas und der Mittelmeergebietes. Feddes Repertorium 1:1–200

    Google Scholar 

  • Serteser A, Kargoğlu M, Senkul C, Konuk M (2009) An assessment on bioclimatic requirements of endemic Quercus aucheri Jaub. et Spach. communities spreading South-West Anatolia, Turkey. Asian J Plant Sci 8:35–41

    Article  Google Scholar 

  • Tayanç M, Im U, Dogruel M, Karaca M (2009) Climate change in Turkey for the last half century. Clim Change 94:483–502

    Article  Google Scholar 

  • Tsiourlis G, Konstantinidis P, Xofis P (2010) Syntaxonomy and synecology of Quercus coccifera Mediterranean shrublands in Greece. J Plant Biol 52:433–447

    Article  Google Scholar 

  • Uğurlu E, Senol SG (2005) Quercus—dominated vegetation units in the Aegean Region of Turkey. Bot Chron 18:283–291

    Google Scholar 

  • Wamelink GWW, Goedhart PW, Van Dobben HF, Berendse F (2005) Plant species as predictors of soil pH: replacing expert judgement with measurements. J Veg Sci 16:461–470

    Article  Google Scholar 

  • Yaltirik F (1984) Türkiye Meşeleri Teşhis Kılavuzu. Tarim Orman ve Koyisleri Genel Mud. Yay, Istanbul

    Google Scholar 

  • Zielioski J, Petrova A, Tomaszewski D (2006) Quercus trojana subsp. yaltirikii (Fagaceae), a new subspecies from southern Turkey. Willdenowia 36:845–849

    Article  Google Scholar 

  • Zohary M (1966) On the oak species of the Middle East. Bull Res Counc Isr Sect D 9:167–186

    Google Scholar 

Download references

Acknowledgements

We thank Florian Jansen for adjusting his R-package for our needs, as well as Magda Pellowski and Sigrid Suchrow for their help with the HOF models. Furthermore, we thank Stephan Hennekens who helped us during the establishment phase of the database. We are grateful to Tracy Erwin for improving our English. Finally, we want to thank all participants from the 9th vegetation database conference and the organizing committee because at this conference the idea for this project was born, mainly due to the good atmosphere and many ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Oldeland.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Appendix 1

(DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uğurlu, E., Oldeland, J. Species response curves of oak species along climatic gradients in Turkey. Int J Biometeorol 56, 85–93 (2012). https://doi.org/10.1007/s00484-010-0399-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-010-0399-9

Keywords

Navigation