Skip to main content
Log in

An improved sobel edge detection method based on generalized type-2 fuzzy logic

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Edge detectors have traditionally been an essential part of many computer vision systems. There are different methods that have been proposed for improving edge detection in real images. This paper proposes an edge detection method based on the Sobel technique and generalized type-2 fuzzy logic systems. To limit the complexity of handling generalized type-2 fuzzy logic, the theory of \(\alpha \)-planes is used. Simulation results are obtained with the Sobel operator (without fuzzy logic), then with a type-1 fuzzy logic system (T1FLS), an interval type-2 fuzzy logic system (IT2FLS) and with a generalized type-2 fuzzy logic system (GT2FLS). The proposed generalized type-2 fuzzy edge detection method is tested with synthetic images with promising results. To illustrate the advantages of using generalized type-2 fuzzy logic in combination with the Sobel operator, the figure of merit of Pratt measure is applied to measure the accuracy of the edge detection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdou I, Pratt W (1979) Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc IEEE 67(5):753–763

    Article  Google Scholar 

  • Biswas R, Sil J (2012) An improved canny edge detection algorithm based on type-2 fuzzy sets. Procedia Technol 4:820–824

    Article  Google Scholar 

  • Bowyer K, Kranenburg C, Dougherty S (2001) Edge detector evaluation using empirical ROC curves. Comput Vis Image Underst 84(1):77–103

    Article  MATH  Google Scholar 

  • Bustince H, Barrenechea E, Pagola M, Fernandez J (2009) Interval-valued fuzzy sets constructed from matrices: application to edge detection. Fuzzy Sets Syst 160(13):1819–1840

    Article  MATH  MathSciNet  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  • Castillo O, Melin P (2008) Type-2 fuzzy logic theory and applications. Springer, Berlin

    MATH  Google Scholar 

  • Castro JR, Castillo O, Melin P (2007) An interval type-2 fuzzy logic toolbox for control applications. FUZZ 2007:1–6

    Google Scholar 

  • Fan Y, Udpa L, Ramuhalli P, Shih W, Stockman GC (2004) Automated rivet inspection for aging aircraft with magneto-optic image. In: International workshop on electromagnetic nondestructive evaluation, East Lansing

  • Go JF, Atae-allah C, Mart HH, Luque-escamilla PL (2001) A measure of quality for evaluating methods of segmentation and edge detection. Pattern Recognit 34:969–980

    Article  Google Scholar 

  • Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using Matlab. In: Prentice-Hall

  • Greenfield S, Chiclana F (2013) Defuzzification of the discretised generalised type-2 fuzzy set: experimental evaluation. Inf Sci, 244:1–25

  • Hu L, Cheng HD, Zhang M (2007) A high performance edge detector based on fuzzy inference rules. Inf Sci 177(21):4768–4784

    Article  Google Scholar 

  • Jacques C, Bauchspiess A (2001) Fuzzy inference system applied to edge detection in digital images. In: V Brazilian conference on neural networks, Brazil

  • Jeon G, Anisetti M, Bellandi V, Damiani E, Jeong J (2009) Designing of a type-2 fuzzy logic filter for improving edge-preserving restoration of interlaced-to-progressive conversion. Inf Sci 179(13):2194–2207

    Article  Google Scholar 

  • Liu F (2008) An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf Sci 178(9):2224–2236

    Article  Google Scholar 

  • Liu X, Mendel JM, Wu D (2012) Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements. Inf Sci 184(1):75–91

    Article  MATH  MathSciNet  Google Scholar 

  • Lopez-Molina C, De Baets B, Bustince H (2013) Quantitative error measures for edge detection. Pattern Recognit 46(4):1125–1139

    Article  Google Scholar 

  • Melin P, Mendoza O, Castillo O (2010) An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst Appl 37(12):8527–8535

    Article  Google Scholar 

  • Mendel J (2001) Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice Hall

  • Mendel JM, John RIB (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127

    Article  Google Scholar 

  • Mendel JM, Fellow L, Liu F, Zhai D (2009) \(\alpha \) -plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans Fuzzy Syst 17(5):1189–1207

    Article  Google Scholar 

  • Mendel JM (2010) Comments on alpha-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans Fuzzy Syst 18(1):229–230

    Article  Google Scholar 

  • Mendel JM, Fellow L (2013) On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans Fuzzy Syst 21(3):426–446

    Article  Google Scholar 

  • Mendoza O, Melin P, Licea G (2009) Interval type-2 fuzzy logic for edges detection in digital images. Int J Intell Syst 24(11):1115–1133

    Article  MATH  Google Scholar 

  • Mendoza O, Melin P, Licea G (2009) A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf Sci 179(13):2078–2101

    Article  Google Scholar 

  • Mendoza O, Melín P, Castillo O (2009) Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl Soft Comput 9(4):1377–1387

    Article  Google Scholar 

  • Mendoza O, Melin P, Licea G (2007) A new method for edge detection in image processing using interval type-2 fuzzy logic. 2007 IEEE Int Conf Granul Comput (GRC 2007), pp 151–151

  • Pagola M, Lopez-Molina C, Fernandez J, Barrenechea E, Bustince H (2013) Interval type-2 fuzzy sets constructed from several membership functions: application to the fuzzy thresholding algorithm. IEEE Trans Fuzzy Syst 21(2):230–244

    Article  Google Scholar 

  • Perez-Ornelas F, Mendoza O, Melin P, Castro JR (2012) Interval type-2 fuzzy logic for image edge detection quality evaluation. In: 2012 annual meeting of the North American fuzzy information processing society (NAFIPS) 1:1–6

  • Pratt WK (2007) Digital image processing. Wiley

  • Prieto MS, Allen AR (2003) A similarity metric for edge images. Pattern Anal Mach Intell IEEE Trans 25(10):1265–1273

    Article  Google Scholar 

  • Ramesh J, Rangachar K, Brian GS (1995) Machine vision. In McGraw-Hill

  • Setayesh M, Zhang M, Johnston M (2012) Effects of static and dynamic topologies in particle swarm optimisation for edge detection in noisy images. In: IEEE congress on evolutionary computation 2012:1–8

  • Sobel I (1970) Camera models and perception, Ph.D. thesis, Stanford University, Stanford, CA

  • Tao C, Thompson W, Taur J (1993) A fuzzy if-then approach to edge detection. Fuzzy Syst, pp 1356–1360

  • Teruhisa S, Futoki S, Hiroshi K, Toshiaki O (2005) Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast. Remote sensing of environment 98(1):21–34

  • Torre V, Poggio TA (1986) On edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):147–163

  • Verma OP, Sharma R (2011) An optimal edge detection using universal law of gravity and ant colony algorithm. 2011 World Congr Inf Commun Technol, pp 507–511

  • Wagner C, Hagras H (2010) Toward general type-2 fuzzy logic systems based on zSlices. Fuzzy Syst IEEE Trans 18(4):637–660

    Article  Google Scholar 

  • Wagner C, Hagras H (2011) Employing zSlices based general type-2 fuzzy sets to model multi level agreement. 2011 IEEE Symp Adv type-2 Fuzzy Log Syst, pp 50–57

  • Wu D (2013) Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans Fuzzy Syst 21(1):80–99

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy Sets, vol 8. Academic Press Inc., USA

    Google Scholar 

  • Zhai D, Mendel JM (2011) Uncertainty measures for general Type-2 fuzzy sets. Inf Sci 181(3):503–518

    Article  MATH  MathSciNet  Google Scholar 

  • Zhai D, Mendel J (2010) Centroid of a general type-2 fuzzy set computed by means of the centroid-flow algorithm. Fuzzy Syst (FUZZ), 2010 IEEE, pp 1–8

Download references

Acknowledgments

We thank the MyDCI program of the Division of Graduate Studies and Research, UABC, and the financial support provided by our sponsor CONACYT contract Grant No.: 44524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, C.I., Melin, P., Castro, J.R. et al. An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft Comput 20, 773–784 (2016). https://doi.org/10.1007/s00500-014-1541-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1541-0

Keywords

Navigation