Skip to main content
Log in

Prospective associations of cardiovascular disease with physical performance and disability

A longitudinal cohort study in the Osteoarthritis Initiative

  • original article
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Background

Literature regarding cardiovascular disease (CVD) and incident physical performance limitations and disability in older people is equivocal.

Aims

This study aimed to investigate whether CVD is longitudinally associated with incident physical performance limitations and disability in a large population-based sample.

Methods

This was an 8‑year prospective study using data collected as part of the Osteoarthritis Initiative. Participants were community-dwelling adults with knee osteoarthritis or at high risk for this condition. Diagnosed CVD was self-reported. Physical performance was assessed with measures of chair stand time and gait speed, whereas disability was assessed with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Longitudinal associations between CVD and changes in physical performance tests (chair stand time and gait speed) and disability score were analyzed using generalized linear models with repeated measurements.

Results

The analyzed sample comprised 4796 adults (mean age 61.2 years, 58.5% female), of whom 313 people (6.5%) reported CVD at baseline. During 8 years of follow-up, after adjustment for 11 potential confounders measured at baseline, those with CVD experienced a worse profile in chair stand time over the 8‑year follow-up period than those without CVD (p = 0.006).

Conclusion

In a cohort of middle-aged and older adults with knee osteoarthritis or at high risk for this condition those with CVD experienced a worse profile in chair stand time over the 8‑year follow-up period than those without CVD; however, CVD was not significantly associated with an increased incidence of poor gait speed and disability over 8 years of follow-up. Importantly, no associations were observed when utilizing propensity score matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jin Y, Tanaka T, Bandinelli S, Ferrucci L, Talegawkar SA. Overall cardiovascular health is associated with all-cause and cardiovascular disease mortality among older community-dwelling men and women. J Aging Health. 2017;29(3):437–53.

    Article  Google Scholar 

  2. Roth GA, Johnson CO, Abate KH, et al. The burden of cardiovascular diseases among US States, 1990–2016. JAMA Cardiol. 2018;3(5):375–89.

    Article  Google Scholar 

  3. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–62.

    Article  Google Scholar 

  4. Fugate Woods N, LaCroix AZ, Gray SL, et al. Frailty: emergence and consequences in women aged 65 and older in the women’s health initiative observational study. J Am Geriatr Soc. 2005;53(8):1321–30.

    Article  Google Scholar 

  5. Leveille SG, Wagner EH, Davis C, et al. Preventing disability and managing chronic illness in frail older adults: a randomized trial of a community‐based partnership with primary care. J Am Geriatr Soc. 1998;46(10):1191–8.

    Article  CAS  Google Scholar 

  6. Penninx BW, Ferrucci L, Leveille SG, Rantanen T, Pahor M, Guralnik JM. Lower extremity performance in nondisabled older persons as a predictor of subsequent hospitalization. J Gerontol A Biol Sci Med Sci. 2000;55(11):M691–97.

    Article  CAS  Google Scholar 

  7. Kleipool EE, Hoogendijk EO, Trappenburg MC, et al. Frailty in older adults with cardiovascular disease: cause, effect or both? Aging Dis. 2018;9(3):489–97.

    Article  Google Scholar 

  8. Bandeen-Roche K, Xue Q‑L, Ferrucci L, et al. Phenotype of frailty: characterization in the women’s health and aging studies. J Gerontol A Biol Sci Med Sci. 2006;61(3):262–6.

    Article  Google Scholar 

  9. Keeney T, Fox AB, Jette DU, Jette A. Functional trajectories of persons with cardiovascular disease in late life. J Am Geriatr Soc. 2019;67(1):37–42.

    Article  Google Scholar 

  10. Kehler DS, Clara I, Hiebert B, et al. The association between patterns of physical activity and sedentary time with frailty in relation to cardiovascular disease. Aging Med. 2019;2(1):18–26.

    Article  Google Scholar 

  11. Eby GA, Eby KL. Rapid recovery from major depression using magnesium treatment. Med Hypotheses. 2006;67(2):362–70.

    Article  CAS  Google Scholar 

  12. Veronese N, Smith T, Reginster JY, Maggi S. Osteoarthritis increases the risk of cardiovascular disease: data from the osteoarthritis initiative. Osteoporos Int. 2017;28(1):58–9.

    Google Scholar 

  13. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15(12):1833–40.

    CAS  PubMed  Google Scholar 

  14. Lewinsohn PM, Seeley JR, Roberts RE, Allen NB. Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychol Aging. 1997;12(2):277–87.

    Article  CAS  Google Scholar 

  15. Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA. The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol. 1999;52(7):643–51.

    Article  CAS  Google Scholar 

  16. Katz JN, Chang LC, Sangha O, Fossel AH, Bates DW. Can comorbidity be measured by questionnaire rather than medical record review? Med Care. 1996;34(1):73–84.

    Article  CAS  Google Scholar 

  17. Haukoos JS, Lewis RJ. The propensity score. JAMA. 2015;314(15):1637–8.

    Article  CAS  Google Scholar 

  18. Veronese N, Stubbs B, Volpato S, et al. Association between gait speed with mortality, cardiovascular disease and cancer: a systematic review and meta-analysis of prospective cohort studies. J Am Med Dir Assoc. 2018;19(11):981–8.

    Article  Google Scholar 

  19. Veronese N, Cereda E, Stubbs B, et al. Risk of cardiovascular disease morbidity and mortality in frail and pre-frail older adults: results from a meta-analysis and exploratory meta-regression analysis. Ageing Res Rev. 2017;35:63–73.

    Article  Google Scholar 

  20. Ervasti J, Virtanen M, Lallukka T, et al. Trends in diagnosis-specific work disability before and after ischaemic heart disease: a nationwide population-based cohort study in Sweden. BMJ Open. 2018;8(4):e19749.

    Article  Google Scholar 

  21. Felson DT, Nevitt MC. Epidemiologic studies for osteoarthritis: new versus conventional study design approaches. Rheum Dis Clin North Am. 2004;30(4):783–97.

    Article  Google Scholar 

  22. Bergmann MM, Byers T, Freedman DS, Mokdad A. Validity of self-reported diagnoses leading to hospitalization: a comparison of self-reports with hospital records in a prospective study of American adults. Am J Epidemiol. 1998;147(10):969–77.

    Article  CAS  Google Scholar 

  23. Woodfield R, UK Biobank Stroke Outcomes Group, UK Biobank Follow-up and Outcomes Working Group, et al. Accuracy of patient self-report of stroke: a systematic review from the UK Biobank Stroke Outcomes Group. PLoS ONE. 2015;10(9):e137538.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Smith.

Ethics declarations

Conflict of interest

N. Veronese, B. Stubbs, S.E. Jackson, A. Koyanagi, V. Noventa, F. Bolzetta, A. Cester, P. Soysal, S. Maggi, G.F. López-Sánchez, M. Loosemore, J. Demurtas, and L. Smith declare that they have no competing interests.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Caption Electronic Supplementary Material

508_2019_1567_MOESM1_ESM.docx

Supplementary Table 1. Regression analysis using chair stand time at the last follow-up as outcome. Supplementary Table 2. Regression analysis using walking speed at the last follow-up as outcome. Supplementary Table 3. Regression analysis using disability at the last follow-up as outcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veronese, N., Stubbs, B., Jackson, S.E. et al. Prospective associations of cardiovascular disease with physical performance and disability. Wien Klin Wochenschr 132, 73–78 (2020). https://doi.org/10.1007/s00508-019-01567-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-019-01567-y

Keywords

Navigation