Skip to main content
Log in

Polynomial kernel adaptation and extensions to the SVM classifier learning

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Three extensions to the Kernel-AdaTron training algorithm for Support Vector Machine classifier learning are presented. These extensions allow the trained classifier to adhere more closely to the constraints imposed by Support Vector Machine theory. The results of these modifications show improvements over the existing Kernel-AdaTron algorithm. A method of parameter optimisation for polynomial kernels is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10):906–914

    Article  Google Scholar 

  2. Zien A, Ratsch G, Mika S, Scholkopf B, Lengauer T, Muller KR (2000) Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16(8):799–807

    Article  Google Scholar 

  3. Hammer B, Gersmann K (2003) A note on the universal approximation capability of support vector machines. Neural Process Lett 17(1):43–45

    Article  Google Scholar 

  4. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2000) A fast iterative nearest point algorithm for support vector machine classifier Design. IEEE Trans. Neural Netw 11(1):124–136

    Article  Google Scholar 

  5. Keerthi SS, Shevade SK, Bhattacharyya C, Murthy KRK (2001) Improvements to Platt’s SMO algorithm for SVM classier design. Neural Comput 13:637–649

    Article  MATH  Google Scholar 

  6. Campbell C, Cristianini N (1998). Simple learning algorithms for training support vector machines. Technical Report, University of Bristol. Available: http://www.svms.org/training

  7. Kecman V, Vogt M, Huang TM (2003) On the equality of Kernel AdaTron and sequential minimal optimisation in classification and regression tasks and alike algorithms for kernel machines. In: Proceedings of the 11th European symposium on artificial neural networks, Bruges, Belgium, Apr 2003

  8. Mangasarian OL, Musicant DR (2001) Lagrangian support vector machines. J Mach Learn Res 1:161–177

    Article  MATH  MathSciNet  Google Scholar 

  9. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Article  MathSciNet  Google Scholar 

  10. Baesens B, Viaene S, Van Gestel T, Suykens JAK, Dedene G, De Moor B, Vanthienen J (2000) An empirical assessment of kernel type performance for least squares support vector machine classifiers. In: Proc. 4th int. conf. knowledge-based intelligent engineering systems and allied technologies, 2000.

  11. Cristianini N, Campbell C, Shawe-Taylor J (1999) Dynamically adapting kernels in support vector machines. In: Kearns MS, Solla SA, Cohn DA (eds) Advances in neural information processing systems 11. MIT Press, Cambridge

  12. Askew A, Miettinen H, Padley B (2003) Event selection using adaptive gaussian kernels. In: Proceedings of statistical problems in particle physics, astrophysics, and cosmology, Stanford, CA, Sep 2003

  13. Gates GW (1972) The Reduced Nearest Neighbor Rule. IEEE Trans Inf Theory 18(3):431–433

    Article  Google Scholar 

  14. Thrun SB, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J, et al. (1991). The MONK’s problems–a performance comparison of different learning algorithms. Technical Report CS-CMU-91–197, Carnegie Mellon University

  15. Getz G, Levine E, Domany E (2000). Coupled two-way clustering analysis of gene microarray data. PNAS: Cell Biol Genet 97(22):12079–12084

    Google Scholar 

  16. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  17. Cristianini N, Shawe-Taylor J (2000). An introduction to support vector machines: and other kernel-based learning methods. Cambridge Press, Cambridge

    Google Scholar 

  18. Principe JC, Euliano NR, Lefebvre WC (1999). Neural and adaptive Systems: fundamentals through simulations. Wiley, New York

    Google Scholar 

  19. Barenblatt GI (1987) Dimensional analysis. Gordon & Breach, New York

    Google Scholar 

  20. Halgamuge SK, Poechmueller W, Glesner M (1995) An alternative approach for generation of membership functions and fuzzy rules based on radial and cubic basis function networks. Int J Approx Reason 12(3–4):279–298

    Google Scholar 

  21. Hollstein T, Halgamuge SK, Glesner M (1996) Computer-aided design of fuzzy systems based on generic VHDL specifications. IEEE Trans Fuzzy Syst 4(4):403–417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, R., Halgamuge, S.K. & Li, J. Polynomial kernel adaptation and extensions to the SVM classifier learning. Neural Comput & Applic 17, 19–25 (2008). https://doi.org/10.1007/s00521-006-0078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-006-0078-2

Keywords

Navigation