Skip to main content
Log in

Machine learning-based CFD simulations: a review, models, open threats, and future tactics

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This review targets various scenarios where CFD could be used and the logical parts needed for exemplary computations. The machine learning aspect with algorithms that have been implemented suggests design parameters to an algorithm that can be used for bodies in flights and different research-based algorithms that have been used and outlines the advantages, disadvantages, and tools used for computing the algorithm. Since fluid behavior is quite erratic, a single algorithm may not be versatile in every case. In some cases, multiple algorithms are combined for successful simulations. The uniqueness of the review lies in the combination of algorithms for every different case with theoretical analysis and disadvantages, which could be avoided by clubbing another algorithm that overcomes the problem. Since ML is not fully mature yet to provide high accuracy without bit preprocessing in the form of the numerical method, this is one of the heavy limitations that are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data relevant to this research has been included in the manuscript.

Abbreviations

ACOFIS:

Algorithm with the fuzzy inference system

AI:

Artificial inteligance

ANFIS:

Adaptive network-based fuzzy inference

BCR:

Bubble column reactor

CAD:

Computer-aided design

CFD:

Computational fluid dynamics

CT:

Computed tomography

DEFIS:

Differential evolution-based fuzzy inference system

DEM:

Discrete element method

FEA:

Finite element analysis

GAFIS:

Genetic algorithm combined with a fuzzy interface system

GPR:

Gaussian process regression

LLVM:

Low-dimensional ventilation model

LMA:

Levenberg–Marquardt algorithm

MLGA:

Machine learning genetic algorithm

RBFNN:

Radial basis function neural network

UAV:

Unmanned aerial vehicle

UQ:

Uncertainty quantification

References

  1. Carnevale M, Facchinetti A, Maggiori L, Rocchi D (2016) Computational fluid dynamics as a means of assessing the influence of aerodynamic forces on the mean contact force acting on a pantograph. Proc Inst Mech Eng Part F J Rail Rapid Transit 230(7):1698–1713. https://doi.org/10.1177/0954409715606748

    Article  Google Scholar 

  2. Padagannavar P, Bheemanna M (2016) Automotive computational fluid dynamics simulation of a car using Ansys. Int J Mech Eng Technol (IJMET) 7:91–104

    Google Scholar 

  3. John J, Pane EA, Suyitno BM, Rahayu GHNN, Rhakasywi D, Suwandi A (2020) Computational fluid dynamics simulation of the turbulence models in the tested section on wind tunnel. Ain Shams Eng J 11:1201–1209. https://doi.org/10.1016/j.asej.2020.02.012

    Article  Google Scholar 

  4. Zhang H, Xu Y, Cai H (2010) Using CFD software to calculate hydrodynamic coefficients. J Mar Sci Appl 9(2):149–155. https://doi.org/10.1007/s11804-010-9009-9

    Article  Google Scholar 

  5. Shah MS, Joshi JB, Kalsi AS, Prasad CSR, Shukla DS (2012) Analysis of flow through an orifice meter: CFD simulation. Chem Eng Sci 71:300–309. https://doi.org/10.1016/j.ces.2011.11.022

    Article  Google Scholar 

  6. Na JS, Jung H-D, Cho H-J, Choi YJ, Lee JS (2018) Computational analysis of airflow dynamics for predicting collapsible sites in the upper airways: a preliminary study. J Appl Physiol. https://doi.org/10.1152/JApplPhysiol.00522.2018

    Article  Google Scholar 

  7. Zhang Z, Liu H, Zhu S, Zhao F (2006) Application of CFD in ship engineering design practice and ship hydrodynamics. J Hydrodyn Ser B 18(3):315–322. https://doi.org/10.1016/s1001-6058(06)60072-3

    Article  Google Scholar 

  8. Witherden FD, Jameson A (2017) Future directions in computational fluid dynamics. In: 23rd AIAA computational fluid dynamics conference. https://doi.org/10.2514/6.2017-3791

  9. Baetens K, Nuyttens D, Verboven P, De Schampheleire M, Nicolaï B, Ramon H (2007) Predicting drift from field spraying by means of a 3D computational fluid dynamics model. Comput Electron Agric 56(2):161–173. https://doi.org/10.1016/j.compag.2007.01.009

    Article  Google Scholar 

  10. PrabhakaraRao P, Sri Sampath V (2014) CFD analysis on airfoil at high angles of attack. Int J Eng Res 3:430–434

    Article  Google Scholar 

  11. Pandey S, Schumacher J, Sreenivasan KR (2020) A perspective on machine learning in turbulent flows. J Turbul. https://doi.org/10.1080/14685248.2020.1757685

    Article  MathSciNet  Google Scholar 

  12. Fidkowski KJ, Darmofal DL (2011) Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J 49(4):673–694. https://doi.org/10.2514/1.j050073

    Article  Google Scholar 

  13. Sadrehaghighi I (2021) Artificial intelligence (AI) and deep learning for CFD, TY-BOOK, 2021/04/12. https://doi.org/10.13140/RG.2.2.22298.59847/1

  14. Kieckhefen P, Pietsch S, Dosta M, Heinrich S (2020) Possibilities and limits of computational fluid dynamics–discrete element method simulations in process engineering: a review of recent advancements and future trends. Annu Rev Chem Biomol Eng 11(1):397–422. https://doi.org/10.1146/annurev-chembioeng-110519-075414

    Article  Google Scholar 

  15. Hanna BN, Dinh NT, Youngblood RW, Bolotnov IA (2020) Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG CFD). Prog Nucl Energy 118:103140

    Article  Google Scholar 

  16. Gyrya V, Shashkov M, Skurikhin A, Tokareva S (2019) Machine learning approaches for the solution of the Riemann problem in fluid dynamics: a case study. J Comput Phys

  17. Müller S, Milano M, Koumoutsakos P (1999) Application of machine learning algorithms to flow modeling and optimization. Annu Res Briefs 169–178

  18. Yeom SH, Na JS, Jung H-D, Cho H-J, Choi YJ, Lee JS (2019) Computational analysis of airflow dynamics for predicting collapsible sites in the upper airways: machine learning approach. J Appl Physiol 127:959–973

    Article  Google Scholar 

  19. Zhang Z, Li Y (2003) CFD simulation on inlet configuration of plate-fin heat exchangers. Cryogenics 43(12):673–678. https://doi.org/10.1016/s0011-2275(03)00179-6

    Article  Google Scholar 

  20. Synylo K, Krupko A, Zaporozhets O, Makarenko R (2020) CFD simulation of exhaust gases jet from aircraft engine. Energy. https://doi.org/10.1016/j.energy.2020.118610

    Article  Google Scholar 

  21. Shourangiz-Haghighi A, Haghnegahdar MA, Wang L, Mussetta M, Kolios A, Lander M (2019) State of the art in the optimisation of wind turbine performance using CFD. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09316-0

    Article  Google Scholar 

  22. Vilag V, Vilag J, Carlanescu R, Mangra A, Florean F (2019) CFD application for gas turbine combustion simulations. In: Computational fluid dynamics simulations. IntechOpen

  23. Santiago JL, Martilli A, Martín F (2006) CFD simulation of airflow over a regular array of cubes. Part I: Three-dimensional simulation of the flow and validation with wind-tunnel measurements. Bound-Layer Meteorol 122(3):609–634. https://doi.org/10.1007/s10546-006-9123-z

    Article  Google Scholar 

  24. Mosavi A, Shamshirband S, Salwana E, Chau K, Tah JHM (2019) prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Eng Appl Comput Fluid Mech 13(1):482–492. https://doi.org/10.1080/19942060.2019.1613448

    Article  Google Scholar 

  25. Xu P, Liu X, Zhang H, Ghista D, Zhang D, Shi C, Huang W (2018) Assessment of boundary conditions for CFD simulation in human carotid artery. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-018-1045-4

    Article  Google Scholar 

  26. Rutkowski DR, Roldán-Alzate A, Johnson KM (2021) Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data. Sci Rep 11(1):1–11

    Article  Google Scholar 

  27. Taebi A (2022) Deep learning for computational hemodynamics: a brief review of recent advances. Fluids 7(6):197

    Article  Google Scholar 

  28. Hammond J, Pepper N, Montomoli F, Michelassi V (2022) Machine Learning methods in CFD for turbomachinery: a review. Int J Turbomach Propuls Power 7(2):16

    Article  Google Scholar 

  29. Park D, Go JS (2020) Design of cyclone separator critical diameter model based on machine learning and cfd. Processes 8(11):1521

    Article  Google Scholar 

  30. Mohammadpour J, Husain S, Salehi F, Lee A (2022) Machine learning regression-CFD models for the nanofluid heat transfer of a microchannel heat sink with double synthetic jets. Int Commun Heat Mass Transfer 130:105808

    Article  Google Scholar 

  31. Tesche C, Otani K, De Cecco CN, Coenen A, De Geer J, Kruk M et al (2020) Influence of coronary calcium on diagnostic performance of machine learning CT-FFR: results from MACHINE registry. Cardiovasc Imaging 13(3):760–770

    Google Scholar 

  32. Patterson NJ (2020) Machine learning driven interpretation of computational fluid dynamics simulations to develop student intuition. Comput Appl Eng Educ. https://doi.org/10.1002/cae.22216

    Article  Google Scholar 

  33. Wessels H, Weißenfels C, Wriggers P (2020) The neural particle method—an updated Lagrangian physics informed neural network for computational fluid dynamics. Comput Methods Appl Mech Eng 368:113127. https://doi.org/10.1016/j.cma.2020.113127

    Article  MathSciNet  MATH  Google Scholar 

  34. Fukami K, Hasegawa K, Nakamura T, Morimoto M, Fukagata K (2020) Model order reduction with neural networks: application to laminar and turbulent flows. arXiv:2011.10277

  35. Fukami K, Fukagata K, Taira K (2019) Super-resolution reconstruction of turbulent flows with machine learning. J Fluid Mech 870:106–120. https://doi.org/10.1017/jfm.2019.238

    Article  MathSciNet  MATH  Google Scholar 

  36. Lye KO, Mishra S, Ray D (2020) Deep learning observables in computational fluid dynamics. J Comput Phys 410:109339

    Article  MathSciNet  MATH  Google Scholar 

  37. Hasegawa K, Fukami K, Murata T, Fukagata K (2020) Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theoret Comput Fluid Dyn. https://doi.org/10.1007/s00162-020-00528-w

    Article  MathSciNet  Google Scholar 

  38. Ding F, Kareem A, Wan J (2019) Aerodynamic tailoring of structures using computational fluid dynamics. Struct Eng Int. https://doi.org/10.1080/10168664.2018.1522936

    Article  Google Scholar 

  39. Pathak J, Mustafa M, Kashinath K, Motheau E, Kurth T, Day M (2020) Using machine learning to augment coarse-grid computational fluid dynamics simulations. arXiv:2010.00072

  40. Tesche C, De Cecco CN, Baumann S, Renker M, McLaurin TW, Duguay TM et al (2018) Coronary CT angiography–derived fractional flow reserve: machine learning algorithm versus computational fluid dynamics modeling. Radiology 288(1):64–72. https://doi.org/10.1148/radiol.2018171291

    Article  Google Scholar 

  41. Gholami A, Bonakdari H, Akhtari AA, Ebtehaj I (2019) A combination of computational fluid dynamics, artificial neural network, and support vectors machines models to predict fow variables in curved channel. Scientia Iranica 26:726–741. https://doi.org/10.24200/sci.2018.20695

    Article  Google Scholar 

  42. Babanezhad M, Behroyan I, Marjani A, Shirazian S (2021) Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results. Nat Res 11:1209. https://doi.org/10.1038/s41598-020-79913-8

    Article  Google Scholar 

  43. Mazuroski W, Berger J, Oliveira RCLF, Mendes N (2018) An artificial intelligence-based method to efficiently bring CFD to building simulation. J Build Perform Simul. https://doi.org/10.1080/19401493.2017.1414880

    Article  Google Scholar 

  44. Cao S-J (2019) Challenges of using CFD simulation for the design and online control of ventilation systems. Indoor and Built Environment 28(1):3–6. https://doi.org/10.1177/1420326X18810568

    Article  Google Scholar 

  45. Band SS, Al-Shourbaji I, Karami H, Karimi S, Esfandiari J, Mosavi A (2020) Combination of group method of data handling (GMDH) and computational fluid dynamics (CFD) for prediction of velocity in channel intake. Appl Sci 10(21):7521. https://doi.org/10.3390/app10217521

    Article  Google Scholar 

  46. Azimi H, Shabanlou S, Ebtehaj I, Bonakdari H, Kardar S (2017) Combination of computational fluid dynamics, adaptive neuro-fuzzy inference system, and genetic algorithm for predicting discharge coefficient of rectangular side orifices. J Irrig Drain Eng 143:04017015. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001190

    Article  Google Scholar 

  47. Uddin G, Arafat S, Kazim AH, Farhan M, Niazi SG, Hayat N, Zeid I, Kamarthi S (2019) Artificial intelligence-based Monte-Carlo numerical simulation of aerodynamics of tire grooves using computational fluid dynamics. Artif Intell Eng Des Anal Manuf 33:1–15. https://doi.org/10.1017/S0890060419000039

    Article  Google Scholar 

  48. Xu P, Babanezhad M, Yarmand H et al (2020) Flow visualization and analysis of thermal distribution for the nanofluid by the integration of fuzzy c-means clustering ANFIS structure and CFD methods. J Vis 23:97–110. https://doi.org/10.1007/s12650-019-00614-0

    Article  Google Scholar 

  49. Babanezhad M, Rezakazemiand M, Marjani A, Shirazian S (2021) Predicting air superficial velocity of two-phase reactors using ANFIS and CFD. ACS Omega 6:239–252. https://doi.org/10.1021/acsomega.0c04386

    Article  Google Scholar 

  50. Kochkov D, Smith JA, Alieva A, Wang Q, Brenner MP, Hoyer S (2021) Machine learning accelerated computational fluid dynamics. arXiv:2102.01010 [physics.flu-dyn]

  51. Babanezhad M, Behroyan I, Nakhjiri AT et al (2021) Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system. Sci Rep 11:1308. https://doi.org/10.1038/s41598-020-80207-2

    Article  Google Scholar 

  52. Ren J, Cao S-J (2020) Development of self-adaptive low-dimension ventilation models using OpenFOAM: towards the application of AI based on CFD data. Build Environ. https://doi.org/10.1016/j.buildenv.2020.106671

    Article  Google Scholar 

  53. Cho J, Kim H, Gebreselassie AL, Shin D (2018) Deep neural network and random forest classifier for source tracking of chemical leaks using fence monitoring data. J Loss Prevent Process Ind 56:548–558. https://doi.org/10.1016/j.jlp.2018.01.011

    Article  Google Scholar 

  54. Ravindran AC, Kokjohn SL (2021) Combining machine learning with 3D-CFD modeling for optimizing a DISI engine performance during cold-start. Energy and AI 5:100072. https://doi.org/10.1016/j.egyai.2021.100072

    Article  Google Scholar 

  55. Badra J, Khaled F, Tang M, Pei Y, Kodavasal J, Pal P, Owoyele O, Fuetterer C, Brenner M, Farooq A (2019) Engine combustion system optimization using CFD and machine learning: a methodological approach. In: Proceedings of the ASME 2019 internal combustion engine division fall technical conference. ASME 2019 internal combustion engine division fall technical conference. Chicago, Illinois, USA. October 20–23, 2019. V001T06A007. ASME. https://doi.org/10.1115/ICEF2019-7238

  56. Aboaba A, Martinez Y, Mohaghegh S, Shahnam M, Guenther C, Liu Y (2020) Smart proxy modeling; application of artificial intelligence and machine learning in computational fluid dynamics

  57. Babanezhad M, Taghvaie Nakhjiri A, Rezakazemi M et al (2020) Functional input and membership characteristics in the accuracy of machine learning approach for estimation of multiphase flow. Sci Rep 10:17793. https://doi.org/10.1038/s41598-020-74858-4

    Article  Google Scholar 

  58. Nguyen Q, Behroyan I, Rezakazemi M et al (2020) Fluid velocity prediction inside bubble column reactor using ANFIS algorithm based on CFD input data. Arab J Sci Eng 45:7487–7498. https://doi.org/10.1007/s13369-020-04611-6

    Article  Google Scholar 

  59. Babanezhad M, Behroyan I, Marjani A et al (2021) Pressure and temperature predictions of Al2O3/water nanofluid flow in a porous pipe for different nanoparticles volume fractions: combination of CFD and ACOFIS. Sci Rep 11:60. https://doi.org/10.1038/s41598-020-79689-x

    Article  Google Scholar 

  60. Ansari AMohaghegh S, Shahnam M, Dietiker JF, Li T (2017) Data driven smart proxy for CFD application of big data analytics and machine learning in computational fluid dynamics, part two: model building at the cell level. NETL-PUB21634; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV

  61. Zhu L, Zhang W, Kou J, Liu Y (2019) Machine learning methods for turbulence modeling in subsonic flows around airfoils. Phys Fluids 31(1):015105. https://doi.org/10.1063/1.5061693

    Article  Google Scholar 

  62. Ansari A, Boosari SSH, Mohaghegh SD (2020) Successful implementation of artificial intelligence and machine learning in multiphase flow: two case studies of CFD problems. J Pet Environ Biotechnol 11:401. https://doi.org/10.35248/2157-7463.20.11.401

    Article  Google Scholar 

  63. Pelalak R, Nakhjiri AT, Marjani A et al (2021) Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors. Sci Rep 11:1891. https://doi.org/10.1038/s41598-021-81514-y

    Article  Google Scholar 

  64. Da Ronch A, Ghoreyshi M, Badcock KJ (2011) On the generation of flight dynamics aerodynamic tables by computational fluid dynamics. Prog Aerosp Sci 47(8):597–620. https://doi.org/10.1016/j.paerosci.2011.09.001

    Article  Google Scholar 

  65. Deere K (2000) Computational investigation of the aerodynamic effects on fluidic thrust vectoring. In: 36th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. https://doi.org/10.2514/6.2000-3598

  66. Ghoreyshi M, Jirásek A, Cummings RM (2014) Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics. Prog Aerosp Sci 71:167–217. https://doi.org/10.1016/j.paerosci.2014.09.001

    Article  Google Scholar 

  67. Kandasamy S, Duncan B, Gau H, Maroy F, Belanger A, Gruen N, Schäufele S (2012) Aerodynamic performance assessment of BMW validation models using computational fluid dynamics. SAE Tech Pap Ser. https://doi.org/10.4271/2012-01-0297

    Article  Google Scholar 

  68. Lam HF, Peng HY (2016) Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations. Renew Energy 90:386–398. https://doi.org/10.1016/j.renene.2016.01.011

    Article  Google Scholar 

  69. Wilson B, Wakes S, Mayo M (2017) Surrogate modeling a computational fluid dynamics-based wind turbine wake simulation using machine learning. In: 2017 IEEE symposium series on computational intelligence (SSCI). https://doi.org/10.1109/ssci.2017.8280844

  70. Yan X, Zhu J, Kuang M, Wang X (2019) Aerodynamic shape optimization using a novel optimizer based on machine learning techniques. Aerosp Sci Technol 86:826–835

    Article  Google Scholar 

  71. Hočevar M, Širok B, Grabec I (2005) A turbulent-wake estimation using radial basis function neural networks. Flow Turbul Combust 74(3):291–308. https://doi.org/10.1007/s10494-005-5728-4

    Article  Google Scholar 

  72. Brunton SL, Hemati MS, Taira K (2020) Special issue on machine learning and data-driven methods in fluid dynamics. Theoret Comput Fluid Dyn. https://doi.org/10.1007/s00162-020-00542-y

    Article  MathSciNet  Google Scholar 

  73. Hanna BN, Dinh NT, Youngblood RW, Bolotnov IA (2020) Machine-learning based error prediction approach for coarse-grid Computational Fluid Dynamics (CG-CFD). Prog Nucl Energy 118:103140

    Article  Google Scholar 

  74. Brunton SL, Noack BR, Koumoutsakos P (2019) Machine learning for fluid mechanics. Annu Rev Fluid Mech 52(1):477–508. https://doi.org/10.1146/annurev-fluid-010719-060214

    Article  MATH  Google Scholar 

  75. Wang B, Wang J (2021) Application of artificial intelligence in computational fluid dynamics. Ind Eng Chem Res 60(7):2772–2790

    Article  Google Scholar 

  76. Zore K, Shah S, Stokes J, Sasanapuri B, Sharkey P (2018) ANSYS CFD study for high lift aircraft configurations. In: 2018 Applied aerodynamics conference. https://doi.org/10.2514/6.2018-2844

  77. Shur ML, Spalart PR, Strelets MK, Travin AK (2008) A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29(6):1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001

    Article  Google Scholar 

  78. Tian L, Zhao N, Wang T, Zhu W, Shen W (2018) Assessment of inflow boundary conditions for RANS simulations of neutral ABL and wind turbine wake flow. J Wind Eng Ind Aerodyn 179:215–228. https://doi.org/10.1016/j.jweia.2018.06.003

    Article  Google Scholar 

  79. Zhu L-T, Tang J-X, Luo Z-H (2020) Machine learning to assist filtered two-fluid model development for dense gas–particle flows. AIChE J 66:16973. https://doi.org/10.1002/aic.16973

    Article  Google Scholar 

  80. Sofos F, Stavrogiannis C, Exarchou-Kouveli KK, Akabua D, Charilas G, Karakasidis TE (2022) Current trends in fluid research in the era of artificial intelligence: a review. Fluids 7(3):116. https://doi.org/10.3390/fluids7030116

    Article  Google Scholar 

  81. Wang S, Nikfar M, Agar J, Liu Y (2021) Stacked generative machine learning models for fast approximations of steady-state Navier–Stokes equations

  82. Peng W, Yuan Z, Wang J (2022) Attention-enhanced neural network models for turbulence simulation. Phys Fluids 34:025111. https://doi.org/10.1063/5.0079302

    Article  Google Scholar 

  83. Franke J, Hirsch C, Jensen AG, Krüs HW, Schatzmann M, Westbury PS, et al (2004) Recommendations on the use of CFD in wind engineering. In: van Beeck JPAJ (eds) Proceedings of the international conference on urban wind engineering and building aerodynamics. COST action C14, impact of wind and storm on city life built environment

  84. Richards PJ, Hoxey RP (1993) Appropriate boundary conditions for computational wind engineering models using the keε turbulence model. J Wind Eng Ind Aerodyn

  85. Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M et al (2008) AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn 96(10e11):1749e61

    Google Scholar 

  86. Franke J, Hellsten A, Schlünzen H, Carissimo B (2007) Best practice guideline for the CFD simulation of flows in the urban environment. COST Office, Brussels

    Google Scholar 

  87. ASME. http://journaltool.asme.org/Templates/JFENumAccuracy.pdf. Retrieved on 30 July 2011

  88. Roache PJ, Chia KN, White F (1986) Editorial policy statement on the control of numerical accuracy. J Fluids Eng

  89. Freitas CJ (1993) Journal of Fluids Engineering editorial policy statement on the control of numerical accuracy. J Fluids Eng

  90. Yan BW, Li QS, He YC, Chan PW (2015) RANS simulation of neutral atmospheric boundary layer flows over complex terrain by proper imposition of boundary conditions and modification on the k-ε model. Environ Fluid Mech 16(1):1–23. https://doi.org/10.1007/s10652-015-9408-1

    Article  Google Scholar 

  91. Tompson J, Schlachter K, Sprechmann P, Perlin K (2017, July) Accelerating Eulerian fluid simulation with convolutional networks. In: International conference on machine learning. PMLR, pp 3424–3433

  92. McGregor RH, Szczerbal D, Muralidhar K, Székely G (2009) A fast alternative to computational fluid dynamics for high quality imaging of blood flow. Med Image Comput Comput Assist Interv 12(Pt 1):124–131. https://doi.org/10.1007/978-3-642-04268-3_16

    Article  Google Scholar 

  93. Shelton ML, Gregory BA, Lamson SH, Moses HL, Doughty RL, Kiss T (1993) Optimization of a transonic turbine airfoil using artificial intelligence, CFD and cascade testing. In: Proceedings of the ASME 1993 international gas turbine and aeroengine congress and exposition, volume 3A: General. Cincinnati, Ohio, USA. May 24–27, 1993. V03AT15A012. ASME. https://doi.org/10.1115/93-GT-161

  94. Hosseini-Boosari SS (2019) Predicting the dynamic parameters of multiphase flow in CFD (dam-break simulation) using artificial intelligence-(cascading deployment). Fluids 4:1–44. https://doi.org/10.3390/fluids4010044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Kumaran Selvaraj.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchigar, D., Kar, K., Shukla, S. et al. Machine learning-based CFD simulations: a review, models, open threats, and future tactics. Neural Comput & Applic 34, 21677–21700 (2022). https://doi.org/10.1007/s00521-022-07838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07838-6

Keywords

Navigation