Skip to main content
Log in

Late Cretaceous exhumation and uplift of the Harz Mountains, Germany: a multi-method thermochronological approach

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Harz Mountains represent one of the most prominent surface expressions of Late Cretaceous intraplate shortening in Central Europe. We present a comprehensive low-temperature thermochronological data set (zircon and apatite, fission track and [U–Th]/He) covering the exhumed Paleozoic basement of the Harz Mountains and the adjacent Kyffhäuser block, as well as Lower Triassic sedimentary rocks of the western and southern rim of the Harz Mountains. Integration of results with sedimentological data from the syntectonic Late Cretaceous Subhercynian Basin allows for a detailed reconstruction of the timing of uplift and erosion of the Harz Mountains. The data reveal that (i) tectonic reorganization and initial exhumation started at around 90 Ma, (ii) uplift and emergence caused erosion of the Mesozoic sedimentary cover between 86–85 Ma and 83–82 Ma, and (iii) erosion of at least 3–4 km of underlying Paleozoic rocks followed and continued into the Paleogene. The thickness of removed overburden amounts to at least 6 km, and most erosion occurred in Santonian to Campanian time at minimum rates of ~ 0.5 km/Myr. The southwestern rim of the Harz has exhumed slower over a longer period of time, and may record a phase of Late Cretaceous, syntectonic sediment accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany. Int J Earth Sci 80:669–690

    Google Scholar 

  • Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics: I. Experimental results. Am Mineral 84:1213–1223

    Article  Google Scholar 

  • Danišík M, Migoń P, Kuhlemann J, Evans NJ, Dunkl I, Frisch W (2010) Thermochronological constraints on the long-term erosional history of the Karkonosze Mts, Central Europe. Geomorphology 117:78–89

    Article  Google Scholar 

  • Danišík M, Štěpančíková P, Evans NJ (2012) Constraining long-term denudation and faulting history in intraplate regions by multisystem thermochronology: An example of the Sudetic Marginal Fault (Bohemian Massif, central Europe). Tectonics 31:TC2003. https://doi.org/10.1029/2011tc003012

    Google Scholar 

  • Danišík M, McInnes BIA, Kirkland CL, McDonald BJ, Evans NJ, Becker T (2017) Seeing is believing: visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Sci Adv 3:e1601121

    Article  Google Scholar 

  • DEKORP-Basin Research Group (1999) Deep crustal structure of the northeast German Basin: new DEKORP BASIN 96 deep-profiling results. Geology 27:55–58

    Article  Google Scholar 

  • Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58:49–94

    Article  Google Scholar 

  • Dumitru TA (1993) A new computer automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21:575–580

    Article  Google Scholar 

  • Dunkl I, Székely B (2002) Component analysis with visualization of fitting—PopShare, a Windows program for data analysis. Geochimica Cosmochimica Acta 66/15A, 201; http://www.sediment.uni-goettingen.de/staff/dunkl/software/popshare.html. Accessed 22 Jan 2019

  • Farley KA (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J Geophys Res 105:2903–2914

    Article  Google Scholar 

  • Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229

    Article  Google Scholar 

  • Fischer C, Dunkl I, von Eynatten H, Wijbrans JR, Gaupp R (2012) Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geol Mag 149:827–840

    Article  Google Scholar 

  • Flick H (1986) The Hercynian Mountains—a postorogenic overthrusted massif? Naturwissenschaften 73:670–671

    Article  Google Scholar 

  • Franz L, Schuster AK, Strauss KW (1997) Basement Evolution in the Rhenohercynian Segment: discontinuous Exumation History of the Eckergneis Complex (Harz Mountains, Germany). Chem Erde 57:105–135

    Google Scholar 

  • Franzke HJ, Voigt T, von Eynatten H, Brix MR, Burmester G (2004) Geometrie und Kinematik der Harznordrandstörung, erläutert an Profilen aus dem Gebiet von Blankenburg. Geowiss Mitt Thüringen 11:39–62

    Google Scholar 

  • Franzke HJ, Müller R, Voigt T, von Eynatten H (2007) Paleo-Stress Paths in the Harz Mountains and surrounding areas (Germany) between Triassic and Upper Cretaceous. Z Geol Wiss 35:141–156

    Google Scholar 

  • Galbraith RF (1981) On statistical models for fission track counts. Math Geol 13:471–471

    Article  Google Scholar 

  • Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks Radiat Meas 21:459–470

    Article  Google Scholar 

  • Gleadow AJW (1981) Fission track dating methods: what are the real alternatives? Nucl Tracks 5:3–14

    Article  Google Scholar 

  • Gleadow AJW, Hurford AJ, Quaife RD (1976) Fission track dating of zircon: improved etching techniques. Earth Planet Res Lett 33:273–276

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Lovering JF (1983) Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Aust Petrol Explor Assoc J 23:93–102

  • Gleadow AJW, Duddy IR, Green PF, Hegarty KA (1986) Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth Planet Sci Lett 78:245–254

    Article  Google Scholar 

  • Green PF (1981) ‘Track-in track’ length measurements in annealed apatites. Nucl Tracks 5:12–18

    Google Scholar 

  • Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol Isot Geosci Sect 79:155–182

    Article  Google Scholar 

  • Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology. Am J Sci 313:145–198

    Article  Google Scholar 

  • Hejl E, Coyle D, Lal N, van den Haute P, Wagner GA (1997) Fission-track dating of the western border of the Bohemian massif: thermochronology and tectonic implications. Int J Earth Sci 86:210–219

    Google Scholar 

  • Hourigan JK, Reiners PW, Brandon MT (2005) U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochimica et Cosmochimica Acta 69(13):3349–3365

  • Hurford AJ (1990) Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology. Chem Geol 80:171–178

    Google Scholar 

  • Hurford AJ, Green PF (1983) The age calibration of fission-track dating. Isot Geosci 1:285–317

    Google Scholar 

  • Jacobs J, Breitkreuz C (2003) Zircon and apatite fission-track thermochronology of Late Carboniferous volcanic rocks of the NE German Basin. Int J Earth Sci 92:165–172

    Article  Google Scholar 

  • Johnson JE, Flowers RM, Baird GB, Mahan KH (2017) “Inverted” zircon and apatite (U–Th)/He dates from the Front Range, Colorado: high-damage zircon as a low-temperature (< 50°C) thermochronometer. Earth Planet Sci Lett 466:80–90

    Article  Google Scholar 

  • Karg H, Carter A, Brix MR, Littke R (2005) Late- and post-Variscan cooling and exhumation history of the northern Rhenish massif and the southern Ruhr Basin: new constraints from fission-track analysis. Int J Earth Sci 94:180–192

    Article  Google Scholar 

  • Ketcham R (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58:275–314

    Article  Google Scholar 

  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007) Improved modeling of fission track annealing in apatite. Am Mineral 92:799–810

    Article  Google Scholar 

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa–Iberia–Europe convergence, not Alpine collision. Geology 36:839–842

    Article  Google Scholar 

  • Kley J, Franzke HJ, Jähne F, Krawczyk C, Lohr T, Reicherter K, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H (2008) Strain and Stress. In: Littke R, Bayer U, Gajewski D, Nelskamp (eds) Dynamics of complex intracontinental basins—the Central European Basin system. Springer, Berlin, pp 97–124

    Google Scholar 

  • Kockel F (2003) Inversion structures in Central Europe—expressions and reasons, an open discussion. Neth J Geosci 82:367–382

    Google Scholar 

  • König W, Köthe A, Ritz I (2011) Die marine Beeinflussung der Subherzynen Senke und der Mittelharzhochfläche im Oligozän—Biostratigraphische und sedimentpetrographische Analysen tertiärer Sandvorkommen. Z Geol Wiss 39:387–431

    Google Scholar 

  • Köppen A, Carter A (2000) Constraints on provenance of the central European Triassic using detrital zircon fission track data. Palaeogeogr Palaeoclimatol Palaeoecol 161:193–204

    Article  Google Scholar 

  • Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental basins—the Central European Basin system. Springer, Berlin, p 519

    Book  Google Scholar 

  • Łuszczak K, Persano C, Braun J, Stuart FM (2017) How crustal thermal properties influence the amount of denudation derived from low-temperature thermochronometry. Geology 45:779–782

    Article  Google Scholar 

  • Marotta AM, Bayer U, Scheck M, Thybo H (2001) The stress field below the NE German basin: Effects induced by the Alpine collision. Geophys J Int 144:F8–F12. https://doi.org/10.1046/j.1365-246x.2001.00373.x

  • McCann T (ed) (2008) The geology of central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society, London

  • Migoń P, Danišík M (2012) Erosional history of the Karkonosze Granite Massif—constraints from adjacent sedimentary basins and thermochronology. Geol Q 56:441–456

    Article  Google Scholar 

  • Naylor M, Sinclair HD (2008) Pro- vs. retro-foreland basins. Basin Res 20:285–303

  • Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U–Th)/He thermochronometry: he diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887

    Article  Google Scholar 

  • Stackebrandt W, Franzke HJ (1989) Alpidic reactivation of the Variscan consolidated lithosphere: the activity of some fracture zones in central Europe. Z Geol Wiss 7:699–712

    Google Scholar 

  • Tanner DC, Krawczyk CM (2017) Restoration of the Cretaceous uplift of the Harz Mountains, North Germany: evidence for the geometry of a thick-skinned thrust. Int J Earth Sci 106:2963–2972

    Article  Google Scholar 

  • Tatzel M, Dunkl I, von Eynatten H (2017) Provenance of Paleo-Rhine sediments from zircon thermochronology, geochemistry, U/Pb dating, and heavy mineral assemblages. Basin Res 29(suppl 1):396–417

    Article  Google Scholar 

  • Thomson SN, Zeh A (2000) Fission-track thermochronology of the Ruhla Crystalline Complex: new constraints on the post-Variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics 324:17–35

    Article  Google Scholar 

  • Thomson SN, Brix MR, Carter A (1997) Late Cretaceous denudation of the Harz Massif assessed by apatite fission-track analysis. Schr Dtsch Geol Ges 2:115 (abstract)

    Google Scholar 

  • Voigt T, von Eynatten H, Franzke HJ (2004) Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geol Pol 54:765–765

    Google Scholar 

  • Voigt T, Wiese F, von Eynatten H, Franzke HJ, Gaupp R (2006) Fazies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Z Dtsch Ges Geowiss 157:203–244

    Google Scholar 

  • Voigt T, von Eynatten H, Kley J (2009) Kommentar zu “Nördliche Harzrandstörung: diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit und Kinematik”. Z Dtsch Ges Geowiss 160(1):93–99

    Google Scholar 

  • von Eynatten H, Voigt T, Meier A, Franzke HJ, Gaupp R (2008) Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe. Int J Earth Sci 97(6):1315–1330

    Article  Google Scholar 

  • Ziegler PA (1987) Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland—a geodynamic model. Tectonophysics 137(1–4):389–420

    Article  Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe, 2nd edn. Shell Internationale Petroleum Mij. BV and Geological Society of London (London), pp 1–239

  • Ziegler PA, Cloetingh SAPL, van Wees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59

    Article  Google Scholar 

Download references

Acknowledgements

We thank Björn Baresel, Eike-Matthias Bultmann, Katrina Kremer, Florian Wetzel and Jörn-Frederic Wotzlaw for supporting the (U–Th)/He analysis at University of Göttingen, Frank Hansen for mineral separation at Ruhr University Bochum, and Jonas Kley and Thomas Voigt for valuable discussions. Thorough reviews by Martin Danišík and an anonymous reviewer helped to improve the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmar von Eynatten.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Eynatten, H., Dunkl, I., Brix, M. et al. Late Cretaceous exhumation and uplift of the Harz Mountains, Germany: a multi-method thermochronological approach. Int J Earth Sci (Geol Rundsch) 108, 2097–2111 (2019). https://doi.org/10.1007/s00531-019-01751-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01751-5

Keywords

Navigation