Skip to main content
Log in

The low-grade basement at Península La Carmela, Chilean Patagonia: new data for unraveling the pre-Permian basin nature of the Eastern Andean Metamorphic Complex

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Eastern Andean Metamorphic Complex at Península La Carmela (48°50’S) consists of quartz-rich metaturbiditic sequences with tectonic slices of pillow metabasalt bodies deformed under low-grade metamorphic conditions. Previous and new detrital zircon U–Pb geochronological data from metasandstones indicate a preferred early Carboniferous maximum depositional age of the protolith, interpreted from the youngest single zircon grains of several metasedimentary rocks in the area. The wide spectrum of zircon ages from Península La Carmela, includes Neoproterozoic-early Paleozoic components and subordinate ancient zircon grains (> 2200 Ma). They were sourced from cratonic regions and/or reworked material from older metasedimentary successions and plutonic belts in southwestern Gondwana (e.g., North Patagonian and Deseado massifs or from the Tierra del Fuego Igneous and Metamorphic Complex). The pillow metabasalts have geochemical affinities of normal mid-oceanic ridge basalts and island-arc tholeiites with Nb–Ta negative anomalies, derived from a depleted mantle source (εNdt of + 6 and + 7.5). In consideration that pillow metabasalts with ocean island basalt affinities are reported, we propose that metaturbiditic successions and metabasalts were tectonically juxtaposed within a pre-Permian accretionary wedge of an active continental margin, after the development of island arcs and back-arc marginal basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

modified from Calderón et al. (2016); B local geological sketch of the Lago O´Higgins-San Martín. Modified to De la Cruz and Suárez (2004) and Rojo (2017); C La Carmela Peninsula with a spot of samples analyzed. TFIMC: Tierra del Fuego Metamorphic Complex; DYC: Duque de York Complex; NV: Nunatak Unit; CMC: Chonos Metamorphic Complex; MDAC: Madre de Dios Accretionary Complex; SASZ: Seno Arcabuz Shear Zone; CMSZ; Canal de las Montañas; MTFB: Magallanes Thrust and Fold Belt; MFFZ: Magallanes-Fagnano Fault Zone

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Augustsson C, Bahlburg H (2003) Active or passive margin? Geochemical and Nd isotope constraints of metasediments in the backstop of a pre-Andean accretionary wedge in southernmost Chile (46°30’–48°30’S), In: Tracing tectonic deformation using the sedimentary record, McCann T, Saintot A (eds). Geol Soc Spec Publ 208:253–268.

  • Augustsson C, Bahlburg H (2008) Provenance of late Paleozoic metasediments of the Patagonian proto-Pacific margin (southernmost Chile and Argentina). Int J Earth Sci 97:71–88. https://doi.org/10.1007/s00531-006-0158-7

    Article  Google Scholar 

  • Augustsson C, Münker C, Bahlburg H, Fanning M (2006) Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U-Pb and Hf-isotope study of single detrital zircons. J Geol Soc Lond 163:983–995. https://doi.org/10.1144/0016-76492005-149

    Article  Google Scholar 

  • Ballivián Justiniano CA, Basei M, Sato A, González P, Benítez M, Lanfranchini M (2020) The Neoproterozoic basement of the Sauce Chico Inlier (Ventania System): geochemistry and U-Pb geochronology of igneous rocks with African lineage in central-eastern Argentina. J South Am Earth Sci. https://doi.org/10.1016/j.jsames.2019.102391

    Article  Google Scholar 

  • Bastias J, Spikings R, Ulianov A, Riley T, Burton-Johnson A, Chiaradia M, Baumgartner L, Hervé F, Bouvier AS (2020) The Gondwanan margin in West Antarctica: Insights from Late Triassic magmatism of the Antarctic Peninsula. Gondwana Res 81:1–20. https://doi.org/10.1016/j.gr.2019.10.018

    Article  Google Scholar 

  • Cabanis B, Lecolle M (1989) Le diagramme La/10, Y/15, Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de me1anges et/ou de contamination crustale. Comptes Rendus Académie Sciences 309:2023–2029

    Google Scholar 

  • Calderón M, Hervé F, Massonne H-J, Tassinari CG, Pankhurst RJ, Godoy E, Theye T (2007) Petrogenesis of the Puerto Edén Igneous and Metamorphic Complex, Magallanes, Chile: Late Jurassic syn-deformational anatexis of metapelites and granitoid magma genesis. Lithos 93:17–38. https://doi.org/10.1016/j.lithos.2006.03.044

    Article  Google Scholar 

  • Calderón M, Hervé F, Fuentes F, Fosdick JC, Sepúlveda F, Galaz G (2016) Tectonic Evolution of Paleozoic and Mesozoic Andean Metamorphic Complexes and the Rocas Verdes Ophiolites in Southern Patagonia. In: Geodynamic Evolution of the Southernmost Andes, Ghiglione MC (eds). Springer Earth System Sciences. doi: https://doi.org/10.1007/978-3-319-39727-6_2.

  • Castillo P, Fanning MC, Hervé F, Lacassie JP (2016) Characterization and tracing of Permian magmatism in the south-western segment of the Gondwanan margin; U-Pb age, Lu-Hf and O isotopic compositions of detrital zircons from metasedimentary complexes of northern Antarctic Peninsula and western Patagonia. Gondwana Res 36:1–13. https://doi.org/10.1016/j.gr.2015.07.014

    Article  Google Scholar 

  • Cingolani C (2011) The Tandilia System of Argentina as a southern extension of the Río de la Plata craton: an overview. Int J Earth Sci 100:221–242. https://doi.org/10.1007/s00531-010-0611-5

    Article  Google Scholar 

  • Copeland P (2020) On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata. Basin Res 00:1–15. https://doi.org/10.1111/bre.12441

    Article  Google Scholar 

  • Cui X, Sun M, Zhao G, Yao J, Zhang Y, Han Y, Dai L (2020) A Devonian arc–back-arc basin system in the southern Chinese Altai: Constraints from geochemical and Sr-Nd-Pb isotopic data for meta-basaltic rocks. Lithos Volumes. https://doi.org/10.1016/j.lithos.2020.105540

    Article  Google Scholar 

  • De La Cruz R, Suárez M (2006) Geología del área Puerto Guadal-Puerto Sánchez, Región Aisén del General Carlos Ibáñez del Campo, Escala 1:100.000, Carta Geológica de Chile, Serie Geología Básica, No 95. Servicio Nacional de Geología y Minería, Santiago, Chile.

  • De La Cruz R, Welkner D, Suárez M, Quiroz D (2004) Geología del área oriental de las hojas Cochrane y Villa O’Higgins, Región Aisén del General Carlos Ibáñez del Campo, escala 1:250.000, Carta Geológica de Chile, Serie Geología Básica, No 85. Servicio Nacional de Geología y Minería, Santiago, 75 Chile.

  • De Wit MJ, de Ronde CE, Tredoux M, Roering C, Hart RJ, Armstrong RA, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562. https://doi.org/10.1038/357553a0

    Article  Google Scholar 

  • Dickinson WR, Gehrels GE (2009) Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125. https://doi.org/10.1016/j.epsl.2009.09.013

    Article  Google Scholar 

  • Du Toit AL (1927) A geological comparison of South America with South Africa. Publications Carnegie Institute, Washington, D.C.

    Google Scholar 

  • Eglington BM (2006) Evolution of the Namaqua-Natal Belt, southern Africa—a geochronological and isotope geochemical review. J Afr Earth Sci 46:93–111. https://doi.org/10.1016/j.jafrearsci.2006.01.014

    Article  Google Scholar 

  • Forsythe R, Mpodozis C (1979) El Archipiélago Madre de Dios, Patagonia occidental, Magallanes: rasgos generales de la estratigrafía y estructura del basamento pre-Jurásico Superior. Revista Geológica De Chile 7:13–29

    Google Scholar 

  • Furnes H, Dilek Y, Zhao G, Safonova J, Santosh M (2020) Geochemical characterization of ophiolites in the Alpine-Himalayan Orogenic Belt: magmatically and tectonically diverse evolution of the Mesozoic Neotethyan oceanic crust. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103258

    Article  Google Scholar 

  • Gehrels G, Valencia V, Pullen A (2006) Detrital zircon geochronology by laser ablation multicollector ICPMS at the Arizona LaserChron Center. In: Geochronology: Emerging opportunities, Olszewski T (eds). Paleontology Society Papers 12:67–76. doi: https://doi.org/10.1017/S1089332600001352.

  • Giacosa R, Márquez M (2002) El basamento paleozoico de la Cordillera Patagónica. In: Geología y Recursos Naturales de Santa Cruz, Haller MJ (eds). Congreso Geológico Argentino Calafate 1:45–55.

  • Giacosa R, Fracchia D, Heredia N (2012) Structure of the Southern Patagonian Andes at 49°S, Argentina. Geol Acta 10:265–282

    Google Scholar 

  • Godoy E (1979) Metabasitas del basamento metamórfico chileno: nuevos datos geoquímicos. Actas 2nd Congreso Geológico Chileno 3:133–143.

  • Guido D, Escayola MP, Schalamuk I (2004) The basement of the Deseado Massif at Bahía Laura, Patagonia, Argentina: a proposal for its evolution. J South Am Earth Sci 16:567–577. https://doi.org/10.1016/j.jsames.2003.10.003

    Article  Google Scholar 

  • Guido DM, Rapela CW, Pankhurst RJ, Fanning CM (2005) Edad del granito del alforamiento Bahía Laura, Macizo del Deseado, provincia de Santa Cruz. Actas 16° Congreso Geológico Argentino La Plata CD ROM 85–88.

  • Hervé F, Pankhurst RJ, Drake R, Beck M (1995) Pillow metabasalts in a mid-Tertiary extensional basin adjacent to the Liquiñe-Ofqui fault zone: the Isla Magdalena area, Aysén, Chile. J South Am Earth Sci 8:33–46. https://doi.org/10.1016/0895-9811(94)00039-5

    Article  Google Scholar 

  • Hervé F, Aguirre L, Godoy E, Massone H-J, Morata D, Pankhurst RJ, Ramírez E, Sepúlveda V, Willner A (1998) Nuevos antecedentes acerca de la edad y las condiciones P-T de los Complejos Metamórficos en Aysén, Chile. X Congreso Latinoamericano De Geología Buenos Aires 2:134–137

    Google Scholar 

  • Hervé F, Sepúlveda V, Morata D (1999) Contrasting geochemistry and metamorphism of pillow basalts in metamorphic complexes from Aysen, S. Chile J South Am Earth Sci 12:379–388. https://doi.org/10.1016/S0895-9811(99)00029-2

    Article  Google Scholar 

  • Hervé F, Fanning CM, Pankhurst RJ (2003) Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. J South Am Earth Sci 16:107–123. https://doi.org/10.1016/S0895-9811(03)00022-1

    Article  Google Scholar 

  • Hervé F, Pankhurst RJ, Fanning CM, Calderón M, Yaxley GM (2007) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos 97:373–394. https://doi.org/10.1016/j.lithos.2007.01.007

    Article  Google Scholar 

  • Hervé F, Calderón M, Faundez V (2008) The metamorphic complexes of the Patagonian and Fueguian Andes. Geological Acta 6:43–45. https://doi.org/10.1344/105.000000240

    Article  Google Scholar 

  • Hervé F, Calderón M, Fanning CM, Kraus S, Pankhurst R (2010) SHRIMP chronology of the Magallanes Basin basement, Tierra del Fuego: Cambrian plutonism and Permian high-grade metamorphism. Andean Geology 32:253–275. https://doi.org/10.5027/andgeoV37n2-a01

    Article  Google Scholar 

  • Hervé F, Calderón M, Fanning CM, Pankhurst RJ, Fuentes F, Rapela CW, Correa J, Quezada P, Marambio C (2016) Devonian magmatism in the accretionary complex of southern Chile. J Geol Soc London 173:587–602. https://doi.org/10.1144/jgs2015-163

    Article  Google Scholar 

  • Jacobs J, Thomas RJ, Armstrong RA, Henjes-Kunst F (1999) Age and thermal evolution of the Mesoproterozoic Cape Meredith Complex, West Falkland. J Geol Soc 156:917–928. https://doi.org/10.1144/gsjgs.156.5.0917

    Article  Google Scholar 

  • Lacassie JP (2003) Estudio de la Proveniencia Sedimentaria de los Complejos Metamórficos de los Andes Patagónicos (46°–51°S), mediante la aplicación de redes neuronales e isótopos estables. Doctoral thesis, Universidad de Chile.

  • Lagally U (1975) Geologische Untersuchungen mit Gebiet Lake General Carrera – Lake Cochrane, Prov. Aysen/Chile unter besonderer Berücksichtigung des Grundgebirges und seiner Tektonik. Dissertation, Universität München.

  • Ludwig KJ (2003) ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center.

  • Malkowski MA, Grove M, Graham SA (2016) Unzipping the Patagonian Andes– longlived influence of rifting history on foreland basin evolution. Lithosphere 8:23–28. https://doi.org/10.1130/L489.1

    Article  Google Scholar 

  • McCulloch MT, Gregory RT, Wasserburg G, Taylor HP Jr (1981) Sm-Nd, Rb-Sr, and 18O/16O isotopic systematics in an oceanic crustal section: evidence from the Samail Ophiolite. J Geophys Res Solid Earth 86:2721–2735

    Article  Google Scholar 

  • Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with Nb–Zr–Y diagram. Chem Geol 56:207–218

    Article  Google Scholar 

  • Metcalf RV, Shervais JW (2008) Supra-Subduction Zone (SSZ) Ophiolites: is there really an “Ophiolite Conundrum”? In: Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson, Wright JE, Shervais JW (eds). Geol Soc Am Spec Paper 438:191–222. doi: https://doi.org/10.1130/2008.2438(07).

  • Millar IL, Pankhurst RJ, Fanning CM (2002) Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana Margin. J Geol Soc 159:145–157. https://doi.org/10.1144/0016-764901-020

    Article  Google Scholar 

  • Miyashiro A (1975) Classification, characteristics, and origin of ophiolites. J Geol 83:249–281. http://www.jstor.org/stable/30060218.

  • Moreira P, Fernández R, Hervé F, Fanning CM, Schalamuk I (2013) Detrital zircons U-Pb SHRIMP ages and provenance of La Modesta Formation, Patagonia Argentina. J South Am Earth Sci 47:32–46. https://doi.org/10.1016/j.jsames.2013.05.010

    Article  Google Scholar 

  • Mullen ED (1983) MnO/TiO2/P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet Sci Lett 62:53–62

    Article  Google Scholar 

  • Muller V, Calderón M, Fosdick JC, Ghiglione MC, Cury LF, Massonne H-J, Fanning CM, Warren CJ, Ramírez de Arellano C, Sternai P (2021) The closure of the Rocas Verdes Basin and early tectono-metamorphic evolution of the Magallanes Fold-and-Thrust Belt, southern Patagonian Andes (52–54◦S). Tectonophysics. https://doi.org/10.1016/j.tecto.2020.228686

    Article  Google Scholar 

  • Navarrete C, Gianni G, Encinas E, Márquez M, Kamerbeek Y, Valle M, Folguera A (2019) Triassic to middle jurassic geodynamic evolution of southwestern Gondwana: from a large flat-slab to mantle plume suction in a rollback subduction setting. Earth Sci Rev 194:125–159. https://doi.org/10.1016/j.earscirev.2019.05.002

    Article  Google Scholar 

  • Oriolo S, Oyhantçabal P, Basei M, Wemmer K, Siegesmund S (2016) The Nico Pérez Terrane (Uruguay): from Archean crustal growth and connections with the Congo Craton to late Neoproterozoic accretion to the Río de la Plata Craton. Precambrian Res 280:147–160. https://doi.org/10.1016/j.gr.2011.05.001

    Article  Google Scholar 

  • Oriolo S, Schulz B, González P, Bechis F, Olaizola E, Krause J, Renda E, Vizán H (2019) The Late Paleozoic tectonometamorphic evolution of Patagonia revisited: Insights from the pressure-temperature-deformation-time (P-T-D-t) path of the Gondwanide basement of the North Patagonian Cordillera (Argentina). Tectonics 38:2378–2400. https://doi.org/10.1029/2018TC005358

    Article  Google Scholar 

  • Oyhantcabal P, Siegesmund S, Wemmer K (2010) The Río de la Plata Craton: a review of units, boundaries, ages and isotopic signature. In: Multiaccretional tectonics at the Rio de la Plata Margins, Siegesmund S, Basei M, Oyhantcabal P (eds). Int J Earth Sci 100:201–220. doi: https://doi.org/10.1007/s00531-010-0580-8.

  • Pankhurst RJ, Weaver SD, Hervé F, Larrondo P (1999) Mesozoic-Cenozoic of the North Patagonian Batholith in Aysen, southern Chile. J Geol Soc 156:673–694. https://doi.org/10.1144/gsjgs.156.4.0673

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Loske W, Marquez M, Fanning CM (2003) Chronological study of the pre-Permian basement rocks of southern Patagonia. J S Am Earth Sci 16:27–44. https://doi.org/10.1016/S0895-9811(03)00017-8

    Article  Google Scholar 

  • Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth-Sci Rev 76:235–257. https://doi.org/10.1016/j.earscirev.2006.02.001

    Article  Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48. https://doi.org/10.1016/j.lithos.2007.06.016

    Article  Google Scholar 

  • Pearce JA (2014) Geochemical fingerprinting of the earth’s oldest rocks. Geology 42:175–176. https://doi.org/10.1130/focus022014.1

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300. https://doi.org/10.1016/0012-821X(73)90129-5

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Permuy-Vidal C, Moreira P, Guido DM, Fanning CM (2014) Linkages between the southern Patagonia Pre-Permian basements: new insights from detrital zircons U-Pb SHRIMP ages from the Cerro Negro District. Geological Acta 12:137–150

    Google Scholar 

  • Pettijohn FP, Potter PE, Siever R (1973) Sand and sandstones. Springer-Verlag, New York-Heidelberg-Berlin, p 618

    Book  Google Scholar 

  • Poujol M, Robb LJ, Anhaeusser CR, Gericke B (2003) A review of the geochronological constraints on the evolution of the Kaapvaal Craton, South Africa. Precambr Res 127:181–213. https://doi.org/10.1016/S0301-9268(03)00187-6

    Article  Google Scholar 

  • Quiroz D, Belmar M (2010) Geología del Área Bahía Murta-Cerro, Región de Aisén del General Carlos Ibáñez del Campo. Carta Geológica de Chile, Serie Geología Básica No 125:1–34, Servicio Nacional de Geología y Minería.

  • Ramírez-Sánchez E, Hervé F, Kelm U, Sassi R (2005) P-T conditions of metapelites from metamorphic complexes in Aysen, Chile. J South Am Earth Sci 19:373–386. https://doi.org/10.1016/j.jsames.2005.04.007

    Article  Google Scholar 

  • Ramírez-Sánchez E, Deckart K, Hervé F (2007) Significance of 40Ar–39Ar encapsulation ages of metapelites from late Palaeozoic metamorphic complexes of Aysen, Chile. Geol Mag 145:1–8. https://doi.org/10.1017/S0016756807004220

    Article  Google Scholar 

  • Ramos VA (2008) Patagonia: a Paleozoic continent adrift? J South Am Earth Sci 26:235–251. https://doi.org/10.1016/j.jsames.2008.06.002

    Article  Google Scholar 

  • Ramos VA (2009) Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In: Backbone of the Americas: Shallow Subduction, Plateau Uplift, and Ridge and Terrane Collision, Kay SM, Ramos VA, Dickinson W (eds). Geological Society of America Memoir 204:31–65.

  • Ramos VA, Naipauer M (2014) Patagonia: where does it come from? J Iber Geol 40:367–379

    Google Scholar 

  • Ramos VA, Chemale F, Naipauer M, Pazos PJ (2014) A provenance study of the Paleozoic Ventania System (Argentina): transient complex sources from Western and Eastern Gondwana. Gondwana Res 26:719–740. https://doi.org/10.1016/j.gr.2013.07.008

    Article  Google Scholar 

  • Rapela CW, Pankhurst RJ, Fanning CM, Grecco LE (2003) Basement evolution of the Sierra de la Ventana Fold Belt: new evidence for Cambrian continental rifting along the southern margin of Gondwana. J Geol Soc 160:613–628. https://doi.org/10.1144/0016-764902-112

    Article  Google Scholar 

  • Riccardi A (1971) Estratigrafía en el oriente de la Bahía de la Lancha, Lago San Martín, Santa Cruz, Argentina. Revista Museo De La Plata 61:245–318

    Google Scholar 

  • Rojo D (2017) Génesis e implicancias tectónica de los metabasaltos del Complejo Metamorfico Andino Oriental en Peninsula La Carmela y La Florida, Lago O’higgins (48°30’-49°00’). Tesis de pre-grado, Universidad Andres Bello, Chile

    Google Scholar 

  • Rojo D, Calderón M (2018) Pillow metabasalts at La Carmela peninsula, Lago O´Higgins (48°50´S): review, correlations with other Paleozoic complex of Patagonian and tectonic implications. XVI Congreso geológico chileno, Concepción, 2018.

  • Rojo D, Calderón M, Hervé F, Díaz J, Quezada P, Suárez RJ, Ghiglione MC, Fuentes F, Theye T, Cataldo J, Sándoval J, Viefhaus T, Cataldo J (2021) Petrology and tectonic evolution of late Paleozoic mafic-ultramafic sequences and the Leones Pluton of the Eastern Andean Metamorphic Complex (46–47°S), southern Chile. J South Am Earth Sci. https://doi.org/10.1016/j.jsames.2021.103198

    Article  Google Scholar 

  • Saccani E (2015) A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th–Nb and Ce–Dy–Yb systematics. Geosci Front 6:481–501. https://doi.org/10.1016/j.gsf.2014.03.006

    Article  Google Scholar 

  • Saunders AD, Tarney J (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. In: Marginal Basin Geology, Kokelaar BP, Howells MF (eds). Geol Soc London Spec Publ 16:59–76.

  • Scheepers R, Armstrong R (2002) New U-Pb SHRIMP zircon ages of the Cape Granite Suite: implications for the magmatic evolution of the Saldania Belt. S Afr J Geo 105:241–256. https://doi.org/10.2113/1050241

    Article  Google Scholar 

  • Shervais JW (1982) Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118. https://doi.org/10.1016/0012-821X(82)90120-0

    Article  Google Scholar 

  • Suárez RJ, Ghiglione MC, Calderón M, Sue C, Martínod J, Guillaume B, Rojo D (2019a) The metamorphic rocks of the Nunatak Viedma in the Southern Patagonian Andes: Provenance sources and implications for the early Mesozoic Patagonia-Antarctic Peninsula connection. J South Am Earth Sci 90:471–486. https://doi.org/10.1016/j.jsames.2018.12.015

    Article  Google Scholar 

  • Suárez RJ, González PD, Ghiglione MC (2019b) A review on the tectonic evolution of the Paleozoic-Triassic basins from Patagonia: record of protracted westward migration of the pre-Jurassic subduction zone, southern Chile. J South Am Earth Sci. https://doi.org/10.1016/j.jsames.2019.102256

    Article  Google Scholar 

  • Suárez R, Ghiglione MC, Sue C, Quezada P, Roy S, Rojo D, Calderón M (2021) Paleozoic-Early Mesozoic structural evolution of the west Gondwana accretionary margin in Southern Patagonia. Argentina J South Am Earth Sci. https://doi.org/10.1016/j.jsames.2020.103062

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Magmatism in the ocean basins, Saunders AD, Norry MJ (eds). Geological Society of London 42:313–345.

  • Thomson SN, Hervé F (2002) New time constraints for the age of metamorphism at the ancestral Pacific Gondwana margin of southern Chile. Revista Geológica De Chile 29:255–271

    Article  Google Scholar 

  • Uriz NJ, Cingolani CA, Chemale FJr, Macambira M, Armstrong R (2011) Isotopic studies on detrital zircons of Silurian-Devonian siliciclastic sequences from Argentinean North Patagonia and Sierra de la Ventana regions: comparative provenance. Int J Earth Sci 100:571–589. https://doi.org/10.1007/s00531-010-0597-z

    Article  Google Scholar 

  • Varela R, Gregori D, González P, Basei M (2015) Caracterización geoquímica del magmatismo de arco devónico y carbonífero-pérmico en el noroeste de patagonia, Argentina. RAGA 72:419–432

    Google Scholar 

  • Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451. https://doi.org/10.1016/j.epsl.2004.05.037

    Article  Google Scholar 

  • Willner A, Hervé F, Massonne H-J (2000) Mineral chemistry and pressure- temperature evolution of two contrasting high-pressure-low-temperature belts in the Chonos Archipelago, Southern Chile. J Petrol 41:309–330. https://doi.org/10.1093/petrology/41.3.309

    Article  Google Scholar 

  • Willner AP, Sepúlveda FA, Hervé F, Massonne H-J, Sudo M (2009) Conditions and timing of pumpellyite–actinolite-facies metamorphism in the Early Mesozoic frontal accretionary prism of the Madre de Dios Archipelago (Latitude 50◦20′ S; Southern Chile). J Petrol 50:2127–2155. https://doi.org/10.1093/petrology/egp071

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Xia L, Li X (2019) Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Res 65:43–67. https://doi.org/10.1016/j.gr.2018.08.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mark Fanning for performing the geochrological analysis of zircons, as well as the support and assistance of the Ciencia Joven program of the Instituto Chileno de Campos de Hielo. Dayvi Mancilla is acknowledged for their hospitality and assistance during the fieldwork at Península La Carmela and Villa O'Higgins. This research has been funded by Fondecyt projects 1161818 (MC) and 1180457 (FH). The manuscript was highly benefited by the suggestions of Dr. Sebastian Oriolo and an anonymous reviewer. Likewise, we are grateful to the associate editor for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rojo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojo, D., Calderón, M., Ghiglione, M.C. et al. The low-grade basement at Península La Carmela, Chilean Patagonia: new data for unraveling the pre-Permian basin nature of the Eastern Andean Metamorphic Complex. Int J Earth Sci (Geol Rundsch) 110, 2021–2042 (2021). https://doi.org/10.1007/s00531-021-02054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02054-4

Keywords

Navigation