Skip to main content

Advertisement

Log in

Sorafenib enhances proteasome inhibitor-induced cell death via inactivation of Akt and stress-activated protein kinases

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Advanced hepatocellular carcinoma (HCC) responds poorly to conventional systemic therapies. Therefore, new effective therapy strategies are urgently needed. Molecular targeted therapies have entered the field of anti-neoplastic treatment and are being used on their own and in combination with other drugs. Sorafenib inhibits proliferation and angiogenesis of HCC by suppressing the Raf serine/threonine kinases and the receptor tyrosine kinases. The proteasome inhibitor bortezomib has shown activity in a variety of solid tumors, including HCC. However, the precise anti-proliferative mechanisms of these agents remain unclear.

Methods

We treated human hepatoma cell lines (Huh7 and Hep3B) and immortalized human hepatocyte (OUMS29) with sorafenib and/or proteasome inhibitors, including epoxomicin and acetyl-leucyl-leucyl-norleucinal. Cytotoxic effects were examined by morphometric analyses of apoptosis and necrosis. Apoptosis was also evaluated by Western blotting of keratin18, PARP and caspase3. The activity of Akt and stress-activated protein kinases was examined by Western blotting.

Results

Both sorafenib and proteasome inhibitors induced apoptosis in Huh7 and OUMS29. However, sorafenib attenuated proteasome inhibitor-induced apoptosis. Sorafenib induced necrosis, especially in combination with proteasome inhibitors. Sorafenib induced down-regulation of Akt synergistically in combination with proteasome inhibitors in Huh7. Sorafenib inhibited both the JNK and p38 pathways in a time- and dose-dependent manner. In addition, sorafenib also inhibited proteasome inhibitor-mediated JNK and p38 activation in both Huh7 and OUMS29.

Conclusions

Sorafenib enhances the anti-proliferative effect of proteasome inhibitors in part by inactivating the Akt signaling pathway and modulating stress-activated protein kinases. The combination of these agents could be an ideal molecular targeted therapy for HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ab:

Antibody

ALLN:

Acetyl-leucyl-leucyl-norleucinal

CREB:

cAMP response element-binding protein

DAPI:

4′6-diamidino-2-phenylindole

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated protein kinase

HCC:

Hepatocellular carcinoma

IGF-1:

Insulin-like growth factor-1

JNK:

c-Jun N-terminal kinase

K:

Keratin

MAPK:

Mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

mTOR:

Mammalian target of rapamycin

mTORC:

Mammalian target of rapamycin complex

NFκB:

Nuclear factor-kappa B

PARP:

Poly-ADP-ribose-polymerase

PDGFR:

Platelet-derived growth factor receptor

PI:

Proteasome inhibitor

PI3K:

Phosphoinositide 3-kinase

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor-α

TRAF2:

Tumor necrosis factor receptor-associated factor-2

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379:1245–55.

    Article  PubMed  Google Scholar 

  2. Finn RS. Development of molecularly targeted therapies in hepatocellular carcinoma: where do we go now? Clin Cancer Res. 2010;16:390–7.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz M, Roayaie S, Konstadoulakis M. Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol. 2007;4:424–32.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu AX. Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer. 2008;112:250–9.

    Article  CAS  PubMed  Google Scholar 

  5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, SHARP Investigation Study Group, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  6. Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomized, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    Article  CAS  PubMed  Google Scholar 

  7. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43–9006 exhibits broad spectrum oral autitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64:7099–109.

    Article  CAS  PubMed  Google Scholar 

  8. Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer. 2004;4:349–60.

    Article  CAS  PubMed  Google Scholar 

  9. Kim GP, Mahoney MR, Szydlo D, Mok TS, Marshke R, Holen K, et al. An international, multicenter phase II trial of bortezomib in patients with hepatocellular carcinoma. Invest New Drugs. 2012;30:387–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Voorhees PM, Orlowski RZ. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol. 2006;46:189–213.

    Article  CAS  PubMed  Google Scholar 

  11. Chen KF, Yeh PY, Yeh KH, Lu YS, Huang SY, Cheng AL. Down-regulation of phosphor-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2008;68:6698–707.

    Article  CAS  PubMed  Google Scholar 

  12. Ganten TM, Koschny R, Haas TL, Sykora J, Li-Weber M, Herzer K, et al. Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology. 2005;42:588–97.

    Article  CAS  PubMed  Google Scholar 

  13. Yu C, Friday BB, Lai JP, Yang L, Sarkaria J, Kay NE, et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther. 2006;5:2378–87.

    Article  CAS  PubMed  Google Scholar 

  14. Chen KF, Yu HC, Liu TH, Lee SS, Chen PJ, Cheng AL. Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. J Hepatol. 2010;52:88–95.

    Article  CAS  PubMed  Google Scholar 

  15. Wright JJ. Combination therapy of bortezomib with novel targeted agents: an emerging treatment strategy. Clin Cancer Res. 2010;16:4094–104.

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi N, Miyazaki M, Fukaya K, Inoue Y, Sakaguchi M, Uemura T, et al. Transplantation of highly differentiated immortalized human hepatocytes to treat acute liver failure. Transplantation. 2000;69:202–7.

    Article  CAS  PubMed  Google Scholar 

  17. Harada M, Strnad P, Toivola DM, Omary MB. Autophagy modulates keratin-containing inclusion formation and apoptosis in cell culture in a context-dependent fashion. Exp Cell Res. 2008;314:1753–64.

    Article  CAS  PubMed  Google Scholar 

  18. Groll M, Huber R. Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach. Biochim Biophys Acta. 2004;1695:33–44.

    Article  CAS  PubMed  Google Scholar 

  19. Alexia C, Fourmatgeat P, Delautier D, Groyer A. Insulin-like growth factor-I stimulates H4II rat hepatoma cell proliferation: dominant role of PI3′K/Akt signaling. Exp Cell Res. 2006;312:1142–52.

    Article  CAS  PubMed  Google Scholar 

  20. Kawaguchi T, Yoshida T, Harada M, Hisamoto T, Nagao Y, Ide T, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165:1499–508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ku NO, Liao J, Omary MB. Apoptosis generates stable fragments of human type I keratins. J Biol Chem. 1997;272:33197–203.

    Article  CAS  PubMed  Google Scholar 

  22. Caulin C, Salvesen GS, Oshima RG. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epitherial cell apoptosis. J Cell Biol. 1997;138:1379–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66:11851–8.

    Article  CAS  PubMed  Google Scholar 

  24. Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA. 1990;87:1973–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Shimizu S, Takehara T, Hikita H, Kodama T, Tsunematsu H, Miyagi T, et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 2012;131:548–57.

    Article  CAS  PubMed  Google Scholar 

  26. Foster KG, Fingar DC. Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem. 2010;285:14071–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010;29:4989–5005.

    Article  CAS  PubMed  Google Scholar 

  28. Krens SF, Spaink HP, Snaar-Jagalska BE. Functions of the MAPK family in vertebrate-development. FEBS Lett. 2006;580:4984–90.

    Article  CAS  PubMed  Google Scholar 

  29. Hagiwara S, Kudo M, Nagai T, Inoue T, Ueshima K, Nishida N, et al. Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. Br J Cancer. 2012;106:1997–2003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H. Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal. 2011;15:719–61.

    Article  CAS  PubMed  Google Scholar 

  31. Huynh H. Molecularly targeted therapy in hepatocellular carcinoma. Biochem Pharmacol. 2010;80:550–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work is supported by in part by a grant-in-aid (2059798, 23591000) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and UOEH Grant for Advanced Research (H22-1) to M.H. We thank Ms. Y. Katsuki and Ms. H. Mihara for their expert technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Harada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honma, Y., Shimizu, S., Takehara, T. et al. Sorafenib enhances proteasome inhibitor-induced cell death via inactivation of Akt and stress-activated protein kinases. J Gastroenterol 49, 517–526 (2014). https://doi.org/10.1007/s00535-013-0796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-013-0796-z

Keywords

Navigation