Skip to main content

Advertisement

Log in

The protective effect of betacellulin against acute pancreatitis is ERBB4 dependent

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The EGFR ligand betacellulin (BTC) has been previously shown to protect mice against experimentally induced acute pancreatitis (AP). BTC binds both autonomous ERBB receptors EGFR and ERBB4. In this study, we evaluated the mechanism underlying the protection from AP-associated inflammation in detail.

Methods

AP was induced with cerulein or l-arginine and investigated in a pancreas-specific ERBB4 knockout and in an EGFR knockdown mouse model (EgfrWa5/+). Pancreatitis was evaluated by scoring inflammation, necrosis, and edema, while microarrays were performed to analyze alterations in the transcriptome between mice with AP and animals which were protected against AP. The intracellular domain (ICD) of ERBB4 was analyzed in different cell compartments.

Results

While the pancreas of BTC transgenic mice in the background of EgfrWa5/+ is still protected against AP, the BTC-mediated protection is no longer present in the absence of ERBB4. We further demonstrate that BTC activates the ICD of ERBB4, and increases the expression of the extracellular matrix (ECM) proteins periostin and matrix gla protein as well as the ECM modulators matrix metalloproteinases 2 and 3, but only in the presence of ERBB4. Notably, the increased expression of these proteins is not accompanied by an increased ECM amount.

Conclusions

These findings suggest that BTC derivates, as a drug, or the ERBB4 receptor, as a druggable target protein, could play an important role in modulating the course of AP and even prevent AP in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Acute pancreatitis

BTC:

Betacellulin

ECM:

Extra cellular matrix

EGF:

Epidermal growth factor

EGFR:

EGF receptor

H&E:

Haemotoxylin and eosin

ICD:

Intracellular domain

MDM2:

Mouse double minute 2 homolog

MGP:

Matrix gla protein

MMP:

Metalloproteinase

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PDAC:

Pancreatic ductal adenocarcinoma

POSTN:

Periostin

SAPK:

Stress-activated protein kinase

YAP1:

Yes-associated protein 1

References

  1. Baron TH, Morgan DE. Acute necrotizing pancreatitis. N Engl J Med. 1999;340(18):1412–7.

    Article  CAS  Google Scholar 

  2. Frossard JL, Steer ML, Pastor CM. Acute pancreatitis. Lancet. 2008;371(9607):143–52.

    Article  Google Scholar 

  3. Graber HU, Friess H, Kaufmann B, Willi D, Zimmermann A, Korc M, et al. ErbB-4 mRNA expression is decreased in non-metastatic pancreatic cancer. Int J Cancer. 1999;84(1):24–7.

    Article  CAS  Google Scholar 

  4. Mill CP, Gettinger KL, Riese DJ. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines. Exp Cell Res. 2011;317(4):392–404.

    Article  CAS  Google Scholar 

  5. Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 2012;22(3):304–17.

    Article  CAS  Google Scholar 

  6. Navas C, Hernández-Porras I, Schuhmacher Alberto J, Sibilia M, Guerra C, Barbacid M. EGF receptor signaling is essential for k-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22(3):318–30.

    Article  CAS  Google Scholar 

  7. Wagner M, Luhrs H, Kloppel G, Adler G, Schmid RM. Malignant transformation of duct-like cells originating from acini in transforming growth factor transgenic mice. Gastroenterology. 1998;115(5):1254–62.

    Article  CAS  Google Scholar 

  8. Wagner M, Weber CK, Bressau F, Greten FR, Stagge V, Ebert M, et al. Transgenic overexpression of amphiregulin induces a mitogenic response selectively in pancreatic duct cells. Gastroenterology. 2002;122(7):1898–912.

    Article  CAS  Google Scholar 

  9. Means AL, Ray KC, Singh AB, Washington MK, Whitehead RH, Harris RC Jr, et al. Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. Gastroenterology. 2003;124(4):1020–36.

    Article  CAS  Google Scholar 

  10. Dahlhoff M, Algul H, Siveke JT, Lesina M, Wanke R, Wartmann T, et al. Betacellulin protects from pancreatitis by activating stress-activated protein kinase. Gastroenterology. 2010;138(4):1585–94.

    Article  CAS  Google Scholar 

  11. Standop J, Standop S, Itami A, Nozawa F, Brand RE, Buchler MW, et al. ErbB2 oncogene expression supports the acute pancreatitis-chronic pancreatitis sequence. Virchows Arch. 2002;441(4):385–91 (Epub 2002/10/31).

    Article  CAS  Google Scholar 

  12. Friess H, Yamanaka Y, Kobrin MS, Do DA, Buchler MW. Korc M (1995) Enhanced erbB-3 expression in human pancreatic cancer correlates with tumor progression. Clin Cancer Res. 1995;1(11):1413–20 (Epub 1995/11/01).

    CAS  PubMed  Google Scholar 

  13. Gilbertson R, Hernan R, Pietsch T, Pinto L, Scotting P, Allibone R, et al. Novel ERBB4 juxtamembrane splice variants are frequently expressed in childhood medulloblastoma. Genes Chromosomes Cancer. 2001;31(3):288–94.

    Article  CAS  Google Scholar 

  14. Veikkolainen V, Vaparanta K, Halkilahti K, Iljin K, Sundvall M, Elenius K. Function of ERBB4 is determined by alternative splicing. Cell Cycle. 2011;10(16):2647–57.

    Article  CAS  Google Scholar 

  15. Zhang YW, Wang R, Liu Q, Zhang H, Liao FF, Xu H. Presenilin/gamma-secretase-dependent processing of beta-amyloid precursor protein regulates EGF receptor expression. Proc Natl Acad Sci USA. 2007;104(25):10613–8.

    Article  CAS  Google Scholar 

  16. Lee HJ, Jung KM, Huang YZ, Bennett LB, Lee JS, Mei L, et al. Presenilin-dependent gamma-secretase-like intramembrane cleavage of ErbB4. J Biol Chem. 2002;277(8):6318–23.

    Article  CAS  Google Scholar 

  17. Komuro A, Nagai M, Navin NE, Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 2003;278(35):33334–41.

    Article  CAS  Google Scholar 

  18. Arasada RR, Carpenter G. Secretase-dependent tyrosine phosphorylation of Mdm2 by the ErbB-4 intracellular domain fragment. J Biol Chem. 2005;280(35):30783–7.

    Article  CAS  Google Scholar 

  19. Schneider MR, Dahlhoff M, Herbach N, Renner-Mueller I, Dalke C, Puk O, et al. Betacellulin overexpression in transgenic mice causes disproportionate growth, pulmonary hemorrhage syndrome, and complex eye pathology. Endocrinology. 2005;146(12):5237–46.

    Article  CAS  Google Scholar 

  20. Lee D, Cross SH, Strunk KE, Morgan JE, Bailey CL, Jackson IJ, et al. Wa5 is a novel ENU-induced antimorphic allele of the epidermal growth factor receptor. Mamm Genome. 2004;15(7):525–36.

    Article  CAS  Google Scholar 

  21. Long W, Wagner KU, Lloyd KC, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development. 2003;130(21):5257–68.

    Article  CAS  Google Scholar 

  22. Nakhai H, Sel S, Favor J, Mendoza-Torres L, Paulsen F, Duncker GI, et al. Ptf1a is essential for the differentiation of GABAergic and glycinergic amacrine cells and horizontal cells in the mouse retina. Development. 2007;134(6):1151–60 (Epub 2007/02/16).

    Article  CAS  Google Scholar 

  23. Schmidt J, Lewandrowski K, Fernandez-del Castillo C, Mandavilli U, Compton CC, Warshaw AL, et al. Histopathologic correlates of serum amylase activity in acute experimental pancreatitis. Dig Dis Sci. 1992;37(9):1426–33.

    Article  CAS  Google Scholar 

  24. Vrolyk V, Schneberger D, Le K, Wobeser BK, Singh B. Mouse model to study pulmonary intravascular macrophage recruitment and lung inflammation in acute necrotizing pancreatitis. Cell Tissue Res. 2019. https://doi.org/10.1007/s00441-019-03023-9(Epub ahead of print)

    Article  PubMed  Google Scholar 

  25. Dahlhoff M, Schafer M, Muzumdar S, Rose C, Schneider MR. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9(9):1825–33.

    Article  CAS  Google Scholar 

  26. Hoesl C, Rohrl JM, Schneider MR, Dahlhoff M. The receptor tyrosine kinase ERBB4 is expressed in skin keratinocytes and influences epidermal proliferation. Biochim Biophys Acta Gen Subj. 2018;1862(4):958–66 (Epub 2018/02/08).

    Article  CAS  Google Scholar 

  27. Muraoka-Cook RS, Caskey LS, Sandahl MA, Hunter DM, Husted C, Strunk KE, et al. Heregulin-dependent delay in mitotic progression requires HER4 and BRCA1. Mol Cell Biol. 2006;26(17):6412–24.

    Article  CAS  Google Scholar 

  28. Haskins JW, Nguyen DX, Stern DF. Neuregulin 1-activated ERBB4 interacts with YAP to induce Hippo pathway target genes and promote cell migration. Sci Signal. 2014;7(355):116 (Epub 2014/12/11).

    Article  Google Scholar 

  29. Kudo A, Kii I. Periostin function in communication with extracellular matrices. J Cell Commun Signal. 2018;12(1):301–8 (Epub 2017/11/01).

    Article  Google Scholar 

  30. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997;386(6620):78–81 (Epub 1997/03/06).

    Article  CAS  Google Scholar 

  31. Lekstan A, Lampe P, Lewin-Kowalik J, Olakowski M, Jablonska B, Labuzek K, et al. Concentrations and activities of metalloproteinases 2 and 9 and their inhibitors (TIMPS) in chronic pancreatitis and pancreatic adenocarcinoma. J Physiol Pharmacol. 2012;63(6):589–99 (Epub 2013/02/08).

    CAS  PubMed  Google Scholar 

  32. Bramhall SR, Stamp GW, Dunn J, Lemoine NR, Neoptolemos JP. Expression of collagenase (MMP2), stromelysin (MMP3) and tissue inhibitor of the metalloproteinases (TIMP1) in pancreatic and ampullary disease. Br J Cancer. 1996;73(8):972–8 (Epub 1996/04/01).

    Article  CAS  Google Scholar 

  33. Lopez JI, Mouw JK, Weaver VM. Biomechanical regulation of cell orientation and fate. Oncogene. 2008;27(55):6981–93 (Epub 2008/11/26).

    Article  CAS  Google Scholar 

  34. Chan LK, Gerstenlauer M, Konukiewitz B, Steiger K, Weichert W, Wirth T, et al. Epithelial NEMO/IKKgamma limits fibrosis and promotes regeneration during pancreatitis. Gut. 2017;66(11):1995–2007 (Epub 2016/07/29).

    Article  CAS  Google Scholar 

  35. Gu H, Fortunato F, Bergmann F, Buchler MW, Whitcomb DC, Werner J. Alcohol exacerbates LPS-induced fibrosis in subclinical acute pancreatitis. Am J Pathol. 2013;183(5):1508–17 (Epub 2013/10/05).

    Article  CAS  Google Scholar 

  36. Hausmann S, Regel I, Steiger K, Wagner N, Thorwirth M, Schlitter AM, et al. Loss of periostin results in impaired regeneration and pancreatic atrophy after cerulein-induced pancreatitis. Am J Pathol. 2016;186(1):24–31 (Epub 2015/12/04).

    Article  CAS  Google Scholar 

  37. Kusnierz-Cabala B, Gurda-Duda A, Solnica B, Fedak D, Dumnicka P, Panek J, et al. Serum matrix Gla protein concentrations in patients with mild and severe acute pancreatitis. Clin Lab. 2011;57(11–12):999–1006 (Epub 2012/01/14).

    CAS  PubMed  Google Scholar 

  38. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9(6):691 (Epub 2018/06/09).

    Article  Google Scholar 

  39. Viegas CSB, Costa RM, Santos L, Videira PA, Silva Z, Araujo N, et al. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: implications for calcification-related chronic inflammatory diseases. PLoS ONE. 2017;12(5):e0177829 (Epub 2017/05/26).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ingrid Renner-Müller and Petra Renner for excellent animal care, Stefanie Riesemann for assistance with Western blot analysis, Josef Millauer for mouse genotyping and Maximilian Marschall for immunohistochemistry. This work was supported by the Else Kröner-Fresenius-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Dahlhoff.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedegger, K., Stumpf, F., Blum, H. et al. The protective effect of betacellulin against acute pancreatitis is ERBB4 dependent. J Gastroenterol 55, 317–329 (2020). https://doi.org/10.1007/s00535-019-01613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-019-01613-6

Keywords

Navigation