Skip to main content

Advertisement

Log in

Comprehensive aptamer-based screen of 1317 proteins uncovers improved stool protein markers of colorectal cancer

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

To screen and validate novel stool protein biomarkers of colorectal cancer (CRC).

Methods

A novel aptamer-based screen of 1317 proteins was used to uncover elevated proteins in the stool of patients with CRC, as compared to healthy controls (HCs) in a discovery cohort. Selected biomarker candidates from the discovery cohort were ELISA validated in three independent cross-sectional cohorts comprises 76 CRC patients, 15 adenoma patients, and 63 healthy controls, from two different ethnicities. The expression of the potential stool biomarkers within CRC tissue was evaluated using single-cell RNA-seq datasets.

Results

A total of 92 proteins were significantly elevated in CRC samples as compared to HCs in the discovery cohort. Among Caucasians, the 5 most discriminatory proteins among the 16 selected proteins, ordered by their ability to distinguish CRC from adenoma and healthy controls, were MMP9, haptoglobin, myeloperoxidase, fibrinogen, and adiponectin. Except myeloperoxidase, the others were significantly associated with depth of tumor invasion. The 8 stool proteins with the highest AUC values were also discriminatory in a second cohort of Indian CRC patients. Several of the stool biomarkers elevated in CRC were also expressed within CRC tissue, based on the single-cell RNA-seq analysis.

Conclusions

Stool MMP9, fibrinogen, myeloperoxidase, and haptoglobin emerged as promising CRC stool biomarkers, outperforming stool Hemoglobin. Longitudinal studies are warranted to assess the clinical utility of these novel biomarkers in early diagnosis of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD. Colorectal cancer statistics 2020. CA Cancer J Clin. 2020;70:7.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD. Cancer statistics 2020. CA Cancer J Clin. 2020;2020(70):7–30.

    Article  Google Scholar 

  3. Issa IA, Noureddine M. Colorectal cancer screening: an updated review of the available options. World J Gastroenterol. 2017;23:5086–96.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22:191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hewitson P, Glasziou P, Watson E, et al. Cochrane systematic review of colorectal cancer screening using the fecal occult blood test (hemoccult): an update. Am J Gastroenterol. 2008;103:1541–9.

    Article  PubMed  Google Scholar 

  6. Levin B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin 2008;58:130–60.

  7. Whitlock EP, Lin JS, Liles E, et al. Screening for colorectal cancer: a targeted, updated systematic review for the US Preventive Services Task Force. Ann Internal Med. 2008;149:638–58.

    Article  Google Scholar 

  8. Zauber AG, Winawer SJ, O’Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med. 2012;366:687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corley DA, Jensen CD, Marks AR, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370:1298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dabbous HK, Mohamed YAE, El-Folly RF, et al. Evaluation of Fecal M2PK as a diagnostic marker in colorectal cancer. J Gastrointest Cancer. 2019;50:442–50.

    Article  CAS  PubMed  Google Scholar 

  11. Juul JS, Hornung N, Andersen B, et al. The value of using the faecal immunochemical test in general practice on patients presenting with non-alarm symptoms of colorectal cancer. Br J Cancer. 2018;119:471–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Turvill J, Mellen S, Jeffery L, et al. Diagnostic accuracy of one or two faecal haemoglobin and calprotectin measurements in patients with suspected colorectal cancer. Scand J Gastroenterol. 2018;53:1526–34.

    Article  CAS  PubMed  Google Scholar 

  13. Bosch LJW, de Wit M, Pham TV, et al. Novel stool-based protein biomarkers for improved colorectal cancer screening: a case-control study. Ann Intern Med. 2017;167:855–66.

    Article  PubMed  Google Scholar 

  14. Komor MA, Bosch LJ, Coupé VM, et al. Proteins in stool as biomarkers for non-invasive detection of colorectal adenomas with high risk of progression. J Pathol. 2020;250:288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang HP, Wang YY, Pan J, et al. Evaluation of specific fecal protein biochips for the diagnosis of colorectal cancer. World J Gastroenterol. 2014;20:1332–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Qiao Z, Pan X, Parlayan C, et al. Proteomic study of hepatocellular carcinoma using a novel modified aptamer-based array (SOMAscanTM) platform. Biochim Biophys Acta. 2017;1865:434–43.

    Article  CAS  Google Scholar 

  17. Sattlecker M, Kiddle SJ, Newhouse S, et al. Alzheimer’s disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimer’s Dementia. 2014;10:724–34.

    Article  PubMed  Google Scholar 

  18. De Groote MA, Higgins M, Hraha T, et al. Highly multiplexed proteomic analysis of quantiferon supernatants to identify biomarkers of latent tuberculosis infection. J Clin Microbiol. 2017;55:391–402.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mehan MR, Williams SA, Siegfried JM, et al. Validation of a blood protein signature for non-small cell lung cancer. Clin Proteom. 2014;11:32.

    Article  CAS  Google Scholar 

  20. Levin B, Lieberman DA, McFarland B, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology. 2008;134:1570–95.

    Article  CAS  PubMed  Google Scholar 

  21. Han Z, Xiao Z, Kalantar-Zadeh K, et al. Validation of a novel modified aptamer-based array proteomic platform in patients with end-stage renal disease. Diagnostics (Basel). 2018;8:71.

    Article  CAS  Google Scholar 

  22. Li H, Courtois ET, Sengupta D, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017;49:708–18.

    Article  CAS  PubMed  Google Scholar 

  23. Lorenc Z, Waniczek D, Lorenc-Podgórska K, et al. Profile of Expression of Genes Encoding Matrix Metallopeptidase 9 (MMP9), Matrix Metallopeptidase 28 (MMP28) and TIMP Metallopeptidase Inhibitor 1 (TIMP1) in Colorectal Cancer: Assessment of the Role in Diagnosis and Prognostication. Med Sci Monit. 2017;23:1305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.

    Article  CAS  PubMed  Google Scholar 

  25. Huang H. Matrix Metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sens (Basel Switzerl). 2018;18:3249.

    Article  CAS  Google Scholar 

  26. Bloomston M, Zhou JX, Rosemurgy AS, et al. Fibrinogen gamma overexpression in pancreatic cancer identified by large-scale proteomic analysis of serum samples. Can Res. 2006;66:2592–9.

    Article  CAS  Google Scholar 

  27. Tang L, Liu K, Wang J, et al. High preoperative plasma fibrinogen levels are associated with distant metastases and impaired prognosis after curative resection in patients with colorectal cancer. J Surg Oncol. 2010;102:428–32.

    Article  PubMed  Google Scholar 

  28. Sun F, Tan YA, Gao QF, et al. Circulating fibrinogen to pre-albumin ratio is a promising biomarker for diagnosis of colorectal cancer. J Clin Lab Anal. 2019;33:e22635.

    Article  PubMed  CAS  Google Scholar 

  29. Li X, An B, Zhao Q, et al. Combined fibrinogen and neutrophil–lymphocyte ratio as a predictive factor in resectable colorectal adenocarcinoma. Cancer Manag Res. 2018;10:6285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galdiero MR, Bianchi P, Grizzi F, et al. Occurrence and significance of tumor-associated neutrophils in patients with colorectal cancer. Int J Cancer. 2016;139:446–56.

    Article  CAS  PubMed  Google Scholar 

  31. Crespo-Sanjuán J, Calvo-Nieves MD, Aguirre-Gervás B, et al. Early detection of high oxidative activity in patients with adenomatous intestinal polyps and colorectal adenocarcinoma: myeloperoxidase and oxidized low-density lipoprotein in serum as new markers of oxidative stress in colorectal cancer. Lab Med. 2015;46:123–35.

    Article  PubMed  Google Scholar 

  32. Däster S, Eppenberger-Castori S, Hirt C, et al. Absence of myeloperoxidase and CD8 positive cells in colorectal cancer infiltrates identifies patients with severe prognosis. Oncoimmunology. 2015;4:e1050574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Droeser RA, Hirt C, Eppenberger-Castori S, et al. High myeloperoxidase positive cell infiltration in colorectal cancer is an independent favorable prognostic factor. PloS One. 2013;8:e64814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mariño-Crespo Ó, Cuevas-Álvarez E, Harding AL, et al. Haptoglobin expression in human colorectal cancer. Histol Histopathol. 2019;34:953–63.

    PubMed  Google Scholar 

  35. Ghuman S, Van Hemelrijck M, Garmo H, et al. Serum inflammatory markers and colorectal cancer risk and survival. Br J Cancer. 2017;116:1358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun L, Hu S, Yu L, et al. Serum haptoglobin as a novel molecular biomarker predicting colorectal cancer hepatic metastasis. Int J Cancer. 2016;138:2724–31.

    Article  CAS  PubMed  Google Scholar 

  37. Sun L, Pan J, Peng L, et al. Combination of haptoglobin and osteopontin could predict colorectal cancer hepatic metastasis. Ann Surg Oncol. 2012;19:2411–9.

    Article  PubMed  Google Scholar 

  38. Karl J, Wild N, Tacke M, et al. Improved diagnosis of colorectal cancer using a combination of fecal occult blood and novel fecal protein markers. Clin Gastroenterol Hepatol. 2008;6:1122–8.

    Article  PubMed  Google Scholar 

  39. Lee JK, Liles EG, Bent S, et al. Accuracy of fecal immunochemical tests for colorectal cancer: systematic review and meta-analysis. Ann Intern Med. 2014;160:171.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen JG, Cai J, Wu HL, et al. Colorectal cancer screening: comparison of transferrin and immuno fecal occult blood test. World J Gastroenterol. 2012;18:2682–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Engwegen JY, Helgason HH, Cats A, et al. Identification of serum proteins discriminating colorectal cancer patients and healthy controls using surface-enhanced laser desorption ionisation-time of flight mass spectrometry. World J Gastroenterol. 2006;12:1536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ward DG, Suggett N, Cheng Y, et al. Identification of serum biomarkers for colon cancer by proteomic analysis. Br J Cancer. 2006;94:1898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gies A, Cuk K, Schrotz-King P. Fecal immunochemical test for hemoglobin in combination with fecal transferrin in colorectal cancer screening. Unit Eur Gastroenterol J. 2018;6:1223–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.L. was supported by the China Scholarship Council (CSC). The authors would like to acknowledge the technical help rendered by Janet Yao and Patricia Jeraldo (Mayo Clinic). We also acknowledge the pioneering work of Dr. David Ahlquist in building up the Mayo stool bank.

Author information

Authors and Affiliations

Authors

Contributions

Study concept, design, data interpretation: CM, Acquisition and analysis of data, establishment of methodology: HL, KV, TZ, SS, PAC, VD, SD, KHL, CP, JBK, HQ, RSB, NC. All authors read and approved the manuscript.

Corresponding author

Correspondence to Chandra Mohan.

Ethics declarations

Conflict of interest

None.

Ethical standards

The study was approved by the respective ethics boards of the Mayo Clinic (IRB# 16-003882) and the University of Houston (IRB#15192-EX).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Vanarsa, K., Zhang, T. et al. Comprehensive aptamer-based screen of 1317 proteins uncovers improved stool protein markers of colorectal cancer. J Gastroenterol 56, 659–672 (2021). https://doi.org/10.1007/s00535-021-01795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-021-01795-y

Keywords

Navigation