Skip to main content
Log in

Dexmedetomidine and hydroxyzine synergistically potentiate the hypnotic activity of propofol in mice

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Investigation into the characteristics of anesthetic interactions may provide clues to anesthesia mechanisms. Dexmedetomidine, an α2-adrenergic receptor agonist, has become a popular sedative in intensive care, and hydroxyzine, a histamine receptor antagonist, is well known as a tranquilizing premedication for anesthesia. However, no experimental or pharmacological evaluation has been reported concerning their combination with propofol. Thus, we studied their combined effect with a hypnotic dose of propofol in ddY mice.

Methods

Male adult mice were intravenously administered either dexmedetomidine (30 μg/kg) or hydroxyzine (5 mg/kg) with propofol (3.75–10 mg/kg) to induce hypnosis, defined as a loss of the righting reflex (LRR). Other mice were intravenously administered propofol, dexmedetomidine (300 μg/kg), or hydroxyzine (50 mg/kg) alone, and subsequent behavioral changes were observed. The 50% effective dose (ED50) for LRR was calculated, and the duration of LRR was determined.

Results

The hypnotic dose of propofol was 9.95 ± 1.04 mg/kg (ED50 ± SEM) without combination. Dexmedetomidine and hydroxyzine reduced the ED50 of propofol to 5.32 ± 0.57 and 5.63 ± 0.57 mg/kg, respectively. Coadministration of dexmedetomidine significantly extended LRR duration compared with propofol alone, whereas hydroxyzine significantly shortened LRR duration. A maximal dose of dexmedetomidine or hydroxyzine alone did not induce hypnosis.

Conclusions

Dexmedetomidine and hydroxyzine demonstrated no hypnotic action alone; however, their coadministration potentiated the hypnotic activity of propofol. Although reduction in the dose of propofol was similar, only dexmedetomidine prolonged the duration of hypnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hendrickx JFA, Eger EI II, Sonner JM, Shafer SL. Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth Analg. 2008;107:494–506.

    Article  PubMed  CAS  Google Scholar 

  2. Grass PS. Anesthetic drug interactions: an insight into general anesthesia—its mechanism and dosing strategies. Anesthesiology. 1998;88:5–6.

    Google Scholar 

  3. Rosow C. Anesthetic drug interaction: an overview. J Clin Anesth. 1997;9:S27–32.

    Article  Google Scholar 

  4. Adachi YU, Watanabe K, Higuchi H, Satoh T. A small dose of midazolam decreases the time to achieve hypnosis without delaying emergence during short-term propofol anesthesia. J Clin Anesth. 2001;13:277–80.

    Article  PubMed  CAS  Google Scholar 

  5. Adachi YU, Watanabe K, Higuchi H, Satoh T. Flumazenil reduces the hypnotic dose of propofol in male patients under spinal anesthesia. J Anesth. 2002;16:9–12.

    Article  PubMed  Google Scholar 

  6. Shafer SL, Hendrickx JFA, Flood P, Sonner J, Eger EI II. Additivity versus synergy: a theoretical analysis of implications for anesthetic mechanisms. Anesth Analg. 2008;107:507–24.

    Article  PubMed  CAS  Google Scholar 

  7. Eger EI 2nd, Tang M, Liao M, Laster MJ, Slot K, Flood P, Jenkins A, Raines D, Hendrickx JF, Shafer SL, Yasumasa T, Sonner JM. Inhaled anesthetics do not combine to produce synergistic effects regarding minimum alveolar anesthetic concentration in rats. Anesth Analg. 2008;107:479–85.

    Article  PubMed  CAS  Google Scholar 

  8. Venn RM, Bradshaw CJ, Spencer R, Brealey D, Caudwell E, Naughton C, Vedio A, Singer M, Feneck R, Treacher D, Willatts SM, Grounds RM. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia. 1999;54:1136–42.

    Article  PubMed  CAS  Google Scholar 

  9. Gozal D, Gozal Y. Pediatric sedation/anesthesia outside the operating room. Curr Opin Anaesthesiol. 2008;21:494–8.

    Article  PubMed  Google Scholar 

  10. Millan MJ, Lejeune F, Gobert A, Brocco M, Auclair A, Bosc C, Rivet JM, Lacoste JM, Cordi A, Dekeyne A. S18616, a highly potent spiroimidazoline agonist at alpha(2)-adrenoceptors: II. Influence on monoaminergic transmission, motor function, and anxiety in comparison with dexmedetomidine and clonidine. J Pharmacol Exp Ther. 2000;295:1206–22.

    PubMed  CAS  Google Scholar 

  11. Gengo FM, Dabronzo J, Yurchak A, Love S, Miller JK. The relative antihistaminic and psychomotor effects of hydroxyzine and cetirizine. Clin Pharmacol Ther. 1987;42:265–72.

    Article  PubMed  CAS  Google Scholar 

  12. Tornetta FJ. A comparison of droperidol, diazepam, and hydroxyzine hydrochloride as premedication. Anesth Analg. 1977;56:496–500.

    Article  PubMed  CAS  Google Scholar 

  13. Mojdehi E, Mauro AL, Labartino L, Reynolds B. Clinical evaluation of hydroxyzine hydrochloride in pediatric anesthesia and its effect on arousal time. Anesth Analg. 1968;47:685–8.

    Article  PubMed  CAS  Google Scholar 

  14. Zsigmond EK, Patterson RL. Double-blind evaluation of hydroxyzine hydrochloride in obstetric anesthesia. Anesth Analg. 1967;46:275–80.

    Article  PubMed  CAS  Google Scholar 

  15. Adachi YU, Watanabe K, Higuchi H, Satoh T. The determinants of propofol induction of anesthesia dose. Anesth Analg. 2001;92:656–61.

    Article  PubMed  CAS  Google Scholar 

  16. Hans P, Deby-Dupont G, Deby C, Pieron F, Verbesselt R, Franssen C, Lamy M. Increase in antioxidant capacity of plasma during propofol anesthesia. J Neurosurg Anesthesiol. 1997;9:234–6.

    Article  PubMed  CAS  Google Scholar 

  17. Hans P, Coussaert E, Cantraine F, Dewandre PY, Brichant JF, Grevesse M, Lamy M. Effects of target-controlled anesthesia with propofol and sufentanil on the hemodynamic response to Mayfield head holder application. Acta Anaesthesiol Belg. 1998;49:7–11.

    PubMed  CAS  Google Scholar 

  18. Souron V, Delaunay L, Bonner F. Sedation with target-controlled propofol infusion during shoulder surgery under interscalene brachial plexus block in the sitting position: report of a series of 140 patients. Eur J Anaesthesiol. 2005;22:853–7.

    Article  PubMed  CAS  Google Scholar 

  19. Adachi YU, Watanabe K, Higuchi H, Satoh T. High-dose flumazenil potentiates the hypnotic activity of propofol, but not that of thiopental, in ddY mice. Acta Anaesthesiol Scand. 2001;45:848–52.

    Article  PubMed  CAS  Google Scholar 

  20. Salonen M, Reid K, Maze M. Synergistic interaction between alpha 2-adrenergic agonists and benzodiazepines in rats. Anesthesiology. 1992;76:1004–11.

    Article  PubMed  CAS  Google Scholar 

  21. Garfield JM, Bukusoglu C. Propofol and ethanol produce additive hypnotic and anesthetic effects in the mouse. Anesth Analg. 1996;83:156–61.

    PubMed  CAS  Google Scholar 

  22. Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98:428–36.

    Article  PubMed  CAS  Google Scholar 

  23. Lin J. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev. 2000;4:471–503.

    Article  PubMed  CAS  Google Scholar 

  24. Luo T, Leung LS. Involvement of tuberomamillary histaminergic neurons in isoflurane anesthesia. Anesthesiology. 2011;115:36–43.

    Article  PubMed  CAS  Google Scholar 

  25. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66:1256–63.

    Article  PubMed  CAS  Google Scholar 

  26. Gupta A, Stierer T, Zuckerman R, Sakima N, Parker SD, Fleisher LA. Comparison of recovery profile after ambulatory anesthesia with propofol, isoflurane, sevoflurane and desflurane: a systematic review. Anesth Analg. 2004;98:632–41.

    Article  PubMed  CAS  Google Scholar 

  27. Hoffman WE, Cunningham F, James MK, Baughman VL, Albrecht RF. Effects of remifentanil, a new short-acting opioid, on cerebral blood flow, brain electrical activity, and intracranial pressure in dogs anesthetized with isoflurane and nitrous oxide. Anesthesiology. 1993;79:107–13.

    Article  PubMed  CAS  Google Scholar 

  28. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology. 1993;79:881–92.

    Article  PubMed  CAS  Google Scholar 

  29. Kilpatrick GJ, McIntyre MS, Cox RF, Stafford JA, Pacofsky GJ, Lovell GG, Wiard RP, Feldman PL, Collins H, Waszczak BL, Tilbrook GS. CNS 7056: a novel ultra-short-acting benzodiazepine. Anesthesiology. 2007;107:60–6.

    Article  PubMed  CAS  Google Scholar 

  30. Upton RN, Somogyi AA, Martinez AM, Colvill J, Grant C. Pharmacokinetics and pharmacodynamics of the short-acting sedative CNS 7056 in sheep. Br J Anaesth. 2010;105:798–809.

    Article  PubMed  CAS  Google Scholar 

  31. Ngwenyama NE, Anderson J, Hoernschemeyer DG, Tobias JD. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Paediatr Anaesth. 2008;18:1190–5.

    PubMed  Google Scholar 

  32. Peden CJ, Cloote AH, Stratford N, Prys-Roberts C. The effect of intravenous dexmedetomidine premedication on the dose requirement of propofol to induce loss of consciousness in patients receiving alfentanil. Anaesthesia. 2001;56:408–13.

    Article  PubMed  CAS  Google Scholar 

  33. Boussofara M, Bracco D, Ravussin P. Comparison of the effects of clonidine and hydroxyzine on haemodynamic and catecholamine reactions to microlaryngoscopy. Eur J Anaesthesiol. 2001;18:75–8.

    PubMed  CAS  Google Scholar 

  34. Guglielminotti J, Descraques C, Petitmaire S, Almenza L, Grenapin O, Mantz J. Effects of premedication on dose requirements for propofol: comparison of clonidine and hydroxyzine. Br J Anaesth. 1998;80:733–6.

    Article  PubMed  CAS  Google Scholar 

  35. Higuchi H, Adachi Y, Arimura S, Ogata M, Satoh T. Oral clonidine premedication reduces the awakening concentration of propofol. Anesth Analg. 2002;94:609–14.

    Article  PubMed  CAS  Google Scholar 

  36. Richards MJ, Skues MA, Javis AP, Prys-Roberts C. Total i.v. anaesthesia with propofol and alfentanil: dose requirements for propofol and the effect of premedication with clonidine. Br J Anaesth. 1990;65:157–63.

    Article  PubMed  CAS  Google Scholar 

  37. Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci USA. 2008;105:1309–14.

    Article  PubMed  CAS  Google Scholar 

  38. Du C, Tully M, Volkow ND, Schiffer WK, Yu M, Luo Z, Koretsky AP, Benveniste H. Differential effects of anesthetics on cocaine’s pharmacokinetic and pharmacodynamic effects in brain. Eur J Neurosci. 2009;30:1565–75.

    Article  PubMed  Google Scholar 

  39. Kent AP, Dodson ME, Bower S. The pharmacokinetics and clinical effects of a low dose of alfentanil in elderly patients. Acta Anaesthesiol Belg. 1988;39:25–33.

    PubMed  CAS  Google Scholar 

  40. Mertens MJ, Olofsen E, Burm AG, Bovill JG, Vuyk J. Mixed-effects modeling of the influence of alfentanil on propofol pharmacokinetics. Anesthesiology. 2004;100:795–805.

    Article  PubMed  CAS  Google Scholar 

  41. Norberg A, Hahn RG, Li H, Olsson J, Prough DS, Børsheim E, Wolf S, Minton RK, Svensén CH. Population volume kinetics predicts retention of 0.9% saline infused in awake and isoflurane-anesthetized volunteers. Anesthesiology. 2007;107:24–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

A part of this study was founded by Grants-in-Aid for Scientific Research from the Japan Society of the Promotion of Science, 22591706.

Conflict of interest

All authors have no conflict of interest for the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushi U. Adachi.

About this article

Cite this article

Kimura-Kuroiwa, K., Adachi, Y.U., Obata, Y. et al. Dexmedetomidine and hydroxyzine synergistically potentiate the hypnotic activity of propofol in mice. J Anesth 26, 422–428 (2012). https://doi.org/10.1007/s00540-012-1344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-012-1344-3

Keywords

Navigation