Skip to main content
Log in

Fabrication and characterization of PECVD silicon nitride for RF MEMS applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The structural, optical and electrical properties of plasma enhanced chemical vapor deposited silicon nitride layers are investigated, which have been used as a dielectric layer during RF MEMS fabrication. During growth, the gas ratio (SiH4/NH3) is varied between 0.33 and 0.5 and pressure is varied between 400 and 700 mTorr while deposition time is kept constant. The results in the films show differing properties. The thicknesses of the resultant films are between 150 to 220 nm with different gas flow ratios and pressures whereas the deposition time was kept constant. A Bruggeman effective medium approximation is utilized to model the refractive index of the films. Reflectance measurements were carried out in the range of 210–250 nm. The refractive indexes of the films varied between 1.79 and 2.03, with a dielectric constant varying from 6.66 to 7.22. Capacitance voltage measurements yield a fixed dielectric charge value in the low −1012 cm−2 while a breakdown voltage of 915 V μm−1 is achieved for films grown at the lowest gas ratio and pressure. The quality of Si/SixNy interface is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bustillo JM, Howe RT, Muller RS (1998) Surface micromaching for microelectromechanical systems. In: Proceedings of IEEE, vol 86, no 8, pp 1552–1574

  • Daldosso N, Melchiorri M, Riboli F et al (2004a) Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides. J Mat Sci Semicond Process 7(4–6):453–458. doi:10.1016/j.mssp.2004.09.023

    Article  Google Scholar 

  • Daldosso N, Melchiorri M, Riboli F et al (2004b) Fabrication and optical characterization of thin two dimentional Si3N4 waveguides. J Mat Sci Semicond 7(4–6):453–458. doi:10.1016/j.mssp.2004.09.023

    Article  Google Scholar 

  • Dueñas S, Pelaez R, Castan E, Pinacho R, Quintanilla L, Barbolla J, Martil I, Gonzalez-Diaz G (1997) Experimental observation of conductance transients in Al/SiNx:H/Si metal-insulator-semiconductor structures. Appl Phys Lett 71(6):826–828. doi:10.1063/1.119658

    Article  Google Scholar 

  • Garcia S, Martil I, Gonzalez Diaz G, Castan E, Duenas S, Fernandez M (1998) Deposition of SiNx:H thin films by the electron cyclotron resonance and its application to Al/SiNx:H/Si structures. J Appl Phys 83:332–338. doi:10.1063/1.366713

    Article  Google Scholar 

  • Hines JH, Malocha DC et al. (1995) Deposition parameters studies and surface acoustic wave characterisation of PECVD silicon nitride films on lithium niobate. In: Proceedings of IEEE transaction on ultrasonics, ferroelectrics and frequency control, vol 42, no 3, pp 397–402

  • Mansour RR, Bakri-Kaseem M, Daneshmand M, Messiha N (2003) RF MEMS devices. In: Proceedings of international conference on MEMS, NANO and smart systems (ICMENS 2003), pp 103–107

  • Olson JM (2002) Analysis of LPCVD process conditions for the deposition of low stressed silicon nitride. Part I: preliminary LPCVD experiments. J Mat Sci Semicond Process 5(1):51–60. doi:10.1016/S1369-8001(02)00058-6

    Article  Google Scholar 

  • Sanders TJ, Caraway EL, Hall CJ et al (1997) Silicon nitride deposition process for low cost microelectronics applications. In: Proceedings of the 12th Bien- nial university/Government/Industry microelecttronic symposium, pp 173–176

  • Stesmans A (1989) The Si = Si3 defect at various 111 si/SiO2 and 111 Si/Si3N4 interfaces. J Semicond Sci Technol 4(12):1000–1011. doi:10.1088/0268-1242/4/12/005

    Article  Google Scholar 

  • Xu G, Jin P, Tazawa M, Yoshimura K (2003) Optical investigation of silicon nitride thin films deposited by r.f. magnetron sputtering. J Thin Solid Films 425(1–2):196–202. doi:10.1016/S0040-6090(02)01089-1

    Article  Google Scholar 

  • Gong C et al (2010) A deep-level transient spectroscopy study of silicon interface states using different nitride surface passivation scheme. Appl Phys Lett 96:1030507-1–103507-3. doi:10.1063/1.3358140

    Google Scholar 

  • Khaliq MA, Shams QA, Brown WD, Naseem HA (1988) Physical properties of memory quality PECVD silicon nitride. J Electron Mater 17(5):355–359. doi:10.1007/BF02652118

    Article  Google Scholar 

  • Niklasson GA, Granqvist CG, Hunderi O (1981) Effective medium models for the optical properties of inhomogeneous materials. J Appl Optics 20(1):26–30. doi:10.1364/AO.20.000026

    Article  Google Scholar 

  • Rahman HU, Chan KY, Ramer R (2010) Cantilever beam designs for RF MEMS switches. J Micromech Microeng 20(075042):12. doi:10.1088/0960-1317/20/7/075042

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. U. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, H.U., Johnson, B.C., Mccallum, J.C. et al. Fabrication and characterization of PECVD silicon nitride for RF MEMS applications. Microsyst Technol 19, 131–136 (2013). https://doi.org/10.1007/s00542-012-1522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1522-0

Keywords

Navigation