Skip to main content

Advertisement

Log in

Taxonomic and functional characterisation of fungi from the Sebacina vermifera complex from common and rare orchids in the genus Caladenia

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The terrestrial orchid genus Caladenia contains many species which are threatened with extinction. They have highly specific associations with Sebacina vermifera and closely related fungi, and conservation of these terrestrial orchids, in part, relies on symbiotic propagation to produce plants for reintroduction and ex situ conservation collections. However, little is known of the diversity of mycorrhizal fungi associating with natural populations. Here, restriction fragment polymorphism analysis, internal transcribed spacer and nuclear large subunit sequencing and symbiotic seed germination were used to investigate the taxonomic and functional diversity of fungal isolates from single populations of six endangered Caladenia species and one common species across the same biogeographic range. Fifty-nine fungal isolates were collected for investigation including ten isolates from the six endangered species Caladenia audasii, Caladenia amoena, Caladenia sp. aff. fragrantissima (Central Victoria), Caladenia sp. aff. patersonii, Caladenia rosella and Caladenia orientalis and 49 isolates from six populations of the common species Caladenia tentaculata. While the common species associated with three distinct S. vermifera-like taxa, the six endangered species were restricted to one of these fungal taxa. No direct relationship between the taxonomic identity of the fungi and their ability to stimulate seed germination was observed; however, the majority of the fungi isolated from the Caladenia species were capable of germinating seed in vitro, indicating their mycorrhizal status and potential for symbiotic propagation in conservation programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  • Backhouse G (2007) Are our orchids safe? A national assessment of threatened orchids in Australia. Lankesteriana 7:8–43

    Google Scholar 

  • Backhouse G, Cameron D (2005) Application of IUCN 2001 Red List categories in determining the conservation status of native orchids of Victoria, Australia. Selbyana 26:58–74

    Google Scholar 

  • Batty AL, Dixon KW, Brundrett M, Sivasithamparam K (2001) Constraints to symbiotic germination of terrestrial orchid seed in a Mediterranean bushland. New Phytol 152:511–520

    Article  Google Scholar 

  • Batty AL, Brundrett MC, Dixon KW, Sivasithamparam K (2006) New methods to improve symbiotic propagation of temperate terrestrial orchid seedlings from axenic culture to soil. Aust J Bot 54:367–374

    Article  Google Scholar 

  • Bidartondo MI, Bruns T, Weiss M, Sergio C, Read DJ (2003) Specialised cheating of the of the ectomycorrhizal symbiosis by a epiparasitic liverwort. Proc R Soc Lond B 270:835–842

    Article  Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61

    Article  PubMed  Google Scholar 

  • Bougoure JJ, Bougoure DS, Cairney JWG, Dearnaley JDW (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in south-eastern Queensland. Mycol Res 109:452–460

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhizae in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Leake JR, Read DJ (2007) Acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834

    Article  CAS  PubMed  Google Scholar 

  • Clements MA, Ellyard RK (1979) The symbiotic germination of Australian terrestrial orchids. Am Orchid Soc Bull 48:810–815

    Google Scholar 

  • Clements M, Cribb PJ, Muir H (1986) A preliminary report on the symbiotic germination of European terrestrial orchids. Kew Bull 41:437–445

    Article  Google Scholar 

  • Dearnaley JDW (2006) The fungal endophytes of Erythrorchis cassythoides—is this orchid saprophytic or parasitic? Australas Mycol 25:51–57

    Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Google Scholar 

  • Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell. Proc Nat Acad Sci 103:18450–18457

    Article  CAS  PubMed  Google Scholar 

  • Dixon KW, Hopper SD (2009) An introduction to Caladenia Br.—Australasia’s jewel among terrestrial orchids. Aust J Bot 57:2–8

    Google Scholar 

  • Duncan M, Pritchard A, Coates F (2003) Recovery plan for fifteen threatened orchids in Victoria and South Australia 2004–2008. Department of Sustainability and Environment, Heidelberg

    Google Scholar 

  • Duncan M, Prichard A, Coates F (2005) Major threats to endangered orchids of Victoria, Australia. Selbyana 26:189–195

    Google Scholar 

  • Eck RV, Dayhoff MO (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Springs, Maryland

  • Fay MF, Krauss SL (2003) Orchid conservation genetics in the molecular age. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History, Sabah

    Google Scholar 

  • Fell JW, Roeijmans H, Boekhout T (1999) Cystofilobasidiales, a new order of basidiomycetous yeasts. Int J Syst Bacteriol 49:907–913

    Article  PubMed  Google Scholar 

  • Filipello-Marchisio V, Berta G (1985) Endophytes of wild orchids native to Italy: their morphology, caryology, ultrastructure and cytochemical characterisation. New Phytol 100:623–641

    Article  Google Scholar 

  • Gaskett AC, Winnick CG, Herberstein ME (2008) Orchid sexual deceit provokes ejaculation. Am Nat 171:E206–E212

    Article  CAS  PubMed  Google Scholar 

  • Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F, Cozzolino S, Perotto S (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum: are mycorrhiza always mutualisms? Mol Ecol 15:491–504

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Pine EM, Langer E, Langer G, Donoghue MJ (1997) Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc Nat Acad Sci 94:12002–12006

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Gilbert LB, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nat 407:506–508

    Article  CAS  Google Scholar 

  • Hollick P (2004) Mycorrhizal specificity in the endemic Western Australian terrestrial orchids (subtribe Diurideae): implications for conservation. Ph.D. thesis, Murdoch University

  • Hopper SD, Brown AP (2004) Robert Brown’s Caladenia revisited, including a revision of its sister genera Cyanicula, Ericksonella and Pheladenia (Caladeniiae: Orchidaceae). Aust Syst Bot 17:171–240

    Article  Google Scholar 

  • Hughes KW, Petersen RH, Lickey EB (2009) Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species’ delimitation across basidiomycete fungi. New Phytol 182:795–798

    Article  CAS  Google Scholar 

  • Huynh TT, McLean CB, Coates F, Lawrie AC (2004) Effect of developmental stage and peloton morphology on success in isolation of mycorrhizal fungi in Caladenia formosa (Orchidaceae). Aust J Bot 52:1–11

    Article  Google Scholar 

  • Huynh TT, Thomson R, McLean CB, Lawrie AC (2009) Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae). Ann Bot 104:757–765

    Article  CAS  PubMed  Google Scholar 

  • Irwin M, Bougoure JJ, Dearnaley J (2007) Pterostylis nutans (Orchidaceae) has a specific association with two ceratobasidium root-associated fungi across its range in eastern Australia. Mycoscience 48:231–239

    Article  CAS  Google Scholar 

  • Jeanes J, Backhouse G (2006) Wild orchids of Victoria Australia. Aquatic Photographics, Melbourne

    Google Scholar 

  • Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968

    Article  PubMed  Google Scholar 

  • Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tintorius. For Sci 21:245–254

    Article  Google Scholar 

  • McCormick MK, Whigham DF, O’Niell J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirements for locally distributed Sebacina spp. New Phytol 154:233–247

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2009) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinformatics 4:193–201

    Google Scholar 

  • Ogura-Tsujita Y, Yukawa T (2008a) Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan. Mycorrhiza 18:331–338

    Article  PubMed  Google Scholar 

  • Ogura-Tsujita Y, Yukawa T (2008b) High specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot 95:93–97

    Article  Google Scholar 

  • Otero JT, Bayman P, Ackerman JD (2005) Variation in mycorrhizal performance in the epiphytic orchid Tolumnia variegata in vitro: the potential for natural selection. Evol Ecol 19:29–43

    Article  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2009) Fungal community ecology: a hybrid beast with a molecular master. BioScience 58:799–810

    Article  Google Scholar 

  • Phillips RD, Faast R, Bower CC, Brown GR, Peakall R (2009) Implications of pollination by food and sexual deception for pollinator specificity, fruit set, population genetics and conservation of Caladenia (Orchidaceae). Aust J Bot 57:287–306

    Article  Google Scholar 

  • Perkins AJ, Masuhara G, McGee PA (1995) Specificity of the associations between Microtis parviflora (Orchidaceae) and its mycorrhizal fungi. Aust J Bot 43:85–91

    Article  Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen FN, Rasmussen HN (2007) Trophic relationships in orchid mycorrhiza—diversity and implications for conservation. Lankesteriana 7:334–341

    Google Scholar 

  • Rasmussen H, Andersen TF, Johansen B (1990) Temperature sensitivity of in vitro germination and seedling development of Dactylorhiza majalis (Orchidaceae) with and without a mycorrhizal fungus. Plant Cell Environ 13:171–177

    Article  Google Scholar 

  • Razafimandimbison SG, Kellogg EA, Bremer B (2004) Recent origin and phylogenetic utility of divergent its putative pseudogenes: a case study from Naucleeae s.l. (Rubiaceae). Syst Biol 53:177–192

    Article  PubMed  Google Scholar 

  • Roberts P (1999) Rhizoctonia-forming fungi. The Herbarium, Royal Botanic Gardens, Kew

    Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nat 399:421–422

    Article  CAS  Google Scholar 

  • Selosse M-A, Weiss M, Jany J-L, Tillier A (2002) Communities and populations of sebacinoid Basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Simon UK, Weiss M (2008) Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Biol Evol 25:2251–2254

    Article  CAS  PubMed  Google Scholar 

  • Shefferson RP, Weiss M, Kull T, Taylor DL (2005) High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Mol Ecol 14:613–626

    Google Scholar 

  • Shefferson RP, Taylor DL, Weiss M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K, Yukawa KT, Miyoshi K, Lee Y-I (2007) The evolutionary history of mycorrhizal specificity among Lady’s slipper orchids. Evol 61:1380–1390

    Article  Google Scholar 

  • Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863

    Article  CAS  PubMed  Google Scholar 

  • Swarts N (2007) Integrated conservation of the rare and endangered terrestrial orchid Caladenia huegelii H. G. Reichb. Ph.D. thesis, Murdoch University

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8:1719–1732

    Article  Google Scholar 

  • Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialisation within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179

    Article  CAS  Google Scholar 

  • Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B 271:35–43

    Article  Google Scholar 

  • Warcup JH (1971) Specificity of mycorrhizal associations in some Australian terrestrial orchids. New Phytol 70:41–46

    Article  Google Scholar 

  • Tedersoo L, Gates G, Dunk CW, Lebel T, May TW, Kõljalg U, Jairus T (2009) Establishment of ectomycorrhizal fungal community on Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter. Mycorrhiza 19:403–416

    Article  PubMed  Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Article  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids. New Phytol 66:631–641

    Article  Google Scholar 

  • Weiss M, Oberwinkler F (2001) Phylogenetic relationships in Auriculariales and related groups—hypotheses derived from nuclear ribosomal DNA sequences. Mycol Res 105:403–415

    Article  CAS  Google Scholar 

  • Weiss M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of Heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York

    Google Scholar 

  • Wright M (2007) Maximising the effectiveness of mycorrhizal fungi in the conservation of Caladenia taxa (Orchidaceae). Ph.D. thesis, University of Melbourne

  • Wright M, Cross R, Dixon K, Huynh T, Lawrie A, Nesbitt L, Pritchard A, Swarts N, Thomson R (2009) Propagation and reintroduction of Caladenia. Aust J Bot 57:373–387

    Article  Google Scholar 

  • Xu JT, Guo SX (2000) Retrospective on the research of the cultivation of Gastrodia elata Bl., a rare traditional Chinese medicine. Chin Medical J 113:686–692

    CAS  Google Scholar 

  • Zettler LW (1997) Terrestrial orchid conservation by symbiotic seed germination: techniques and perspectives. Selbyana 18:188–194

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the technical assistance of Sascha Andrusiak and Tina Gilbertson. This study was supported by funding from the Department of Sustainability and Environment Victoria and the Natural Heritage Trust. We dedicate this paper to the memory of Cassandra McLean.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magali M. Wright.

Additional information

Cassandra B. McLean—deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, M.M., Cross, R., Cousens, R.D. et al. Taxonomic and functional characterisation of fungi from the Sebacina vermifera complex from common and rare orchids in the genus Caladenia . Mycorrhiza 20, 375–390 (2010). https://doi.org/10.1007/s00572-009-0290-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0290-x

Keywords

Navigation