Skip to main content
Log in

Paraspinal muscle control in people with osteoporotic vertebral fracture

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The high risk of sustaining subsequent vertebral fractures after an initial fracture cannot be explained solely by low bone mass. Extra-osseous factors, such as neuromuscular characteristics may help to explain this clinical dilemma. Elderly women with (n = 11) and without (n = 14) osteoporotic vertebral fractures performed rapid shoulder flexion to perturb the trunk while standing on a flat and short base. Neuromuscular postural responses of the paraspinal muscles at T6 and T12, and deep lumbar multifidus at L4 were recorded using intramuscular electromyography (EMG). Both groups demonstrated bursts of EMG that were initiated either before or shortly after the onset of shoulder flexion (< 0.05). Paraspinal and multifidus onset occurred earlier in the non-fracture group (50–0 ms before deltoid onset) compared to the fracture group (25 ms before and 25 ms after deltoid onset) in the flat base condition. In the short base condition, EMG amplitude increased significantly above baseline earlier in the non-fracture group (75–25 ms before deltoid onset) compared to the fracture group (25–0 ms before deltoid onset) at T6 and T12; yet multifidus EMG increased above baseline earlier in the fracture group (50–25 ms before deltoid) compared to the non-fracture group (25–0 ms before deltoid). Time to reach maximum amplitude was shorter in the fracture group. Hypothetically, the longer time to initiate a postural response and shorter time to reach maximum amplitude in the fracture group may indicate a neuromuscular contribution towards subsequent fracture aetiology. This response could also be an adaptive characteristic of the central nervous system to minimise vertebral loading time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aaron JE, Shore PA, Shore RC et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone 27:277–282

    Article  PubMed  CAS  Google Scholar 

  2. Aruin AS, Latash ML (1995) Directional specificity of postural muscles in feed-forward postural reactions during fast voluntary arm movements. Exp Brain Res 103:323–332

    Article  PubMed  CAS  Google Scholar 

  3. Belen’kii VY, Gurfinkel VS, Pal’tsev YI (1967) Elements of control of voluntary movements. Biofizika 12:142–147

    Google Scholar 

  4. Briggs AM, Greig AM, Wark JD et al (2004) A review of anatomical and mechanical factors affecting vertebral body integrity. Int J Med Sci 1:170–180

    PubMed  Google Scholar 

  5. Briggs AM, Tully EA, Adams PE et al (2005) Vertebral centroid and Cobb angle measures of thoracic kyphosis. Inter Med J 35:A96

    Google Scholar 

  6. Briggs AM, Wrigley TV, Dieën JHv et al (2006) The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J 15:1785–1795

    Article  PubMed  Google Scholar 

  7. Davies KM, Stegman MR, Heaney RP et al (1996) Prevalence and severity of vertebral fracture: the Saunders county bone quality study. Osteoporos Int 6:160–165

    Article  PubMed  CAS  Google Scholar 

  8. Dieën JHv, Kingma I, Meijer R et al (2001) Stress distribution changes in bovine vertebrae just below the endplate after sustained loading. Clin Biomech 16:S135–S142

    Article  Google Scholar 

  9. Dixon WG, Lunt M, Pye SR et al (2005) Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology 44:642–646

    Article  PubMed  CAS  Google Scholar 

  10. Duan YB, Duboeuf F, Munoz F et al (2006) The fracture risk index and bone mineral density as predictors of vertebral structural failure. Osteoporos Int 17:54–60

    Article  PubMed  Google Scholar 

  11. Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    Article  PubMed  CAS  Google Scholar 

  12. Finnern HW, Sykes DP (2003) The hospital cost of vertebral fractures in the EU: estimates using national datasets. Osteoporos Int 14:429–436

    Article  PubMed  Google Scholar 

  13. Gilsanz V, Loro LM, Roe TF et al (1995) Vertebral size in elderly women with osteoporosis: mechanical implications and relationships to fractures. J Clin Invest 95:2332–2337

    Article  PubMed  CAS  Google Scholar 

  14. Greig AM (2006) Trunk neuromuscular control and balance characteristics in individuals with osteoporotic vertebral fracture. PhD Thesis, University of Melbourne

  15. Harrison DE, Cailliet R, Harrison DD et al (2001) Reliability of centroid, Cobb, and Harrison posterior tangent methods: Which to choose for analysis of thoracic kyphosis. Spine 26:E227–E234

    Article  PubMed  CAS  Google Scholar 

  16. Hides JA, Stokes MJ, Saide M et al (1994) Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute subacute low back pain. Spine 19:165–172

    Article  PubMed  CAS  Google Scholar 

  17. Hodges P, Cholewicki J, Coppieters M et al (2006) Trunk muscle activity is increased during experimental back pain, but the pattern varies between individuals. International Society for Electrophysiology and Kinesiology Annual Scientific Meeting, Turin, Italy

  18. Hodges P, Cresswell A, Thorstensson A (1999) Preparatory trunk motion accompanies rapid upper limb movement. Exp Brain Res 124:69–79

    Article  PubMed  CAS  Google Scholar 

  19. Hodges PW (2001) Changes in motor planning of feedforward postural responses of the trunk muscles in low back pain. Exp Brain Res 141:261–266

    Article  PubMed  CAS  Google Scholar 

  20. Hodges PW, Cresswell AG, Thorstensson A (2001) Perturbed upper limb movements cause short-latency postural responses in trunk muscles. Exp Brain Res 138:243–250

    Article  PubMed  CAS  Google Scholar 

  21. Hodges PW, Richardson CA (1999) Altered trunk muscle recruitment in people with low back pain with upper limb movement at different speeds. Arch Phys Med Rehab 80:1005–1112

    Article  CAS  Google Scholar 

  22. Hodges PW, Richardson CA (1997) Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp Brain Res 114:362–370

    Article  PubMed  CAS  Google Scholar 

  23. Hodges PW, Richardson CA (1996) Inefficient muscular stabilization of the lumbar spine associated with low back pain: a motor control evaluation of transversus abdominis. Spine 21:2640–2650

    Article  PubMed  CAS  Google Scholar 

  24. Horak FB, Nashner LM (1986) Central programming of postural movements: adaptations to altered support-surface configurations. J Neurophysiol 55:1369–1381

    PubMed  CAS  Google Scholar 

  25. Kopperdahl DL, Pearlman JL, Keaveny TM (2000) Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res 18:685–690

    Article  PubMed  CAS  Google Scholar 

  26. Lindsay R, Burge RT, Strauss DM (2005) One year outcomes and costs following a vertebral fracture. Osteoporos Int 16:78–85

    Article  PubMed  CAS  Google Scholar 

  27. MacDonald D, Moseley GL, Hodges P (2004) The function of the lumbar multifidus in unilateral low back pain. 5th Interdisciplinary world congress on low back and pelvic pain, Melbourne

  28. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J 312:1254–1259

    CAS  Google Scholar 

  29. McCloskey EV, Spector TD, Eyres KS et al (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  PubMed  CAS  Google Scholar 

  30. Miyakoshi N, Hongo M, Maekawa S et al (2005) Factors related to spinal mobility in patients with postmenopausal osteoporosis. Osteoporos Int 16:1871–1874

    Article  PubMed  Google Scholar 

  31. Moseley GL, Hodges PW, Gandevia SC (2002) Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine 27:E29–E36

    Article  PubMed  Google Scholar 

  32. Nevitt MC, Ettinger B, Black DM et al (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800

    PubMed  CAS  Google Scholar 

  33. Oleksik A, Ott SM, Vedi S et al (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375

    Article  PubMed  CAS  Google Scholar 

  34. O’Sullivan PB, Twomey LT, Allison GT (1997) Evaluation of specific stabilizing exercise in the treatment of chronic low back pain with radiologic diagnosis of spondylolysis or spondylolisthesis. Spine 22:2959–2967

    Article  PubMed  CAS  Google Scholar 

  35. Pluijm SFM, Tromp AM, Smit JH et al (2000) Consequences of vertebral deformities in older men and women. J Bone Miner Res 15:1564–1572

    Article  PubMed  CAS  Google Scholar 

  36. Pollintine P, Dolan P, Tobias JH et al (2004) Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body—a cause of osteoporotic vertebral fracture? Spine 29:774–782

    Article  PubMed  Google Scholar 

  37. Ross PD, Davis JW, Epstein RS et al (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    PubMed  CAS  Google Scholar 

  38. Ross PD, Genant HK, Davis JW et al (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126

    Article  PubMed  CAS  Google Scholar 

  39. Sinaki M. (2003) Critical appraisal of physical rehabilitation measures after osteoporotic vertebral fracture. Osteoporos Int 14:774–779

    Article  Google Scholar 

  40. Sinaki M, Itoi E, Wahner HW et al (2002) Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone 30:836–841

    Article  PubMed  CAS  Google Scholar 

  41. Sinaki M, Khosla S, Limburg PJ et al (1993) Muscle strength in osteoporotic versus normal women. Osteoporos Int 3:8–12

    Article  PubMed  CAS  Google Scholar 

  42. Sinaki M, Wollan PC, Scott RW et al (1996) Can strong back extensors prevent vertebral fractures in women with osteoporosis? Mayo Clin Proc 71:951–956

    Article  PubMed  CAS  Google Scholar 

  43. Singer K, Edmondston S, Day R et al (1995) Prediction of thoracic and lumbar vertebral body compressive strength. Correlations with bone mineral density and vertebral region. Bone 17:167–174

    Article  PubMed  CAS  Google Scholar 

  44. Washburn RA, McAuley E, Katula J et al (1999) The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol 52:643–651

    Article  PubMed  CAS  Google Scholar 

  45. Wilke HJ, Wolf S, Claes LE et al (1995) Stability increase in the lumbar spine with different muscle groups. Spine 20:192–198

    Article  PubMed  CAS  Google Scholar 

  46. Woollacott MH, Shumway-Cook A, Nashner LM (1986) Aging and posture control: changes in sensory organization and muscular co-ordination. Int J Aging Hum Dev 23:97–114

    PubMed  CAS  Google Scholar 

  47. Zattara M, Bouisset S (1988) Posturo-kinetic organisation during the early phase of voluntary upper limb movement. I. Normal subjects. J Neurol Neurosurg Psychiatry 51:956–965

    PubMed  CAS  Google Scholar 

  48. Zedka M, Prochazka A, Knight B et al (1999) Voluntary and reflex control of human back muscles during induced pain. J Physiol Lond 520:591–604

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Medical Imaging Department, St Vincent’s Hospital, Melbourne; Mr Tim Wrigley and Dr Sallie Cowan for technical assistance; and funding provided from the Physiotherapy Research Foundation (Australia) grant (013/05). Paul Hodges is supported by the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew M. Briggs or Kim L. Bennell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggs, A.M., Greig, A.M., Bennell, K.L. et al. Paraspinal muscle control in people with osteoporotic vertebral fracture. Eur Spine J 16, 1137–1144 (2007). https://doi.org/10.1007/s00586-006-0276-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0276-8

Keywords

Navigation