Skip to main content

Advertisement

Log in

Cephalomedullary nailing versus sliding hip screws for Intertrochanteric and basicervical hip fractures: a propensity-matched study of short-term outcomes in over 17,000 patients

  • Original Article • HIP - FRACTURES
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Hip fractures are associated with poor mortality and morbidity outcomes. Controversy exists over what the preferred treatment is between sliding hips screws (SHSs) and cephalomedullary nails (CMNs) for stable intertrochanteric (IT) and basicervical (BC) hip fractures. The purpose of this study was to compare early postoperative outcomes and complications in patients treated with SHS to those treated with CMN in IT and BC hip fractures.

Methods

We used the National Surgical Quality Improvement Program database to identify IT and BC hip fractures, excluding subtrochanteric hip fractures treated with a SHS and CMN for 2008 to 2016. After propensity score matching, there were 8505 patients in the SHS cohort and 8505 in the CMN cohort. Propensity score-adjusted multivariate regression models assed SHS as an independent risk factor for the following 30-day outcomes: mortality, postoperative major and minor complications, discharge disposition, readmission and reoperation, length of hospital stay (LOS), and operative time.

Results

No difference in mortality was encountered between SHS and CMN (p = 0.440). Compared to CMN, the SHS cohort had an 11.6% decreased likelihood of a minor complication (p < 0.001); however, no difference was found between CMN and SHS for major complications (p = 0.117). SHS patients were less likely to have transfusion (p < 0.001), DVT (p = 0.007), and MI (0.024). SHS patients were 12.5% more likely to go home (p = 0.002). No association was discovered between being treated with a SHS and reoperation (p = 0.449) and readmission (p = 0.588). SHS patients had almost a quarter of a day longer LOS (p = 0.041). Patients treated with SHS had a statistically significant (p < 0.001), but clinically irrelevant 2-min longer procedure.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Landefeld C (2011) Goals of care for hip fracture: promoting independence and reducing mortality. Arch Intern Med 171:1837–1838

    Article  Google Scholar 

  2. Magazine P, Haentjen J, Colón-Emeri C, Vanderschueren D, Milise K, Velkeniers B, Boone B (2009) Meta-analysis: excess mortality after hip fracture among older. Ann Intern Med 152:380–390

    Google Scholar 

  3. Kiriakopoulos E, McCormick F, Nwachukwu BU et al (2017) In-hospital mortality risk of intertrochanteric hip fractures: a comprehensive review of the US Medicare database from 2005 to 2010. Musculoskelet Surg 101:213–218. https://doi.org/10.1007/s12306-017-0470-3

    Article  CAS  PubMed  Google Scholar 

  4. Prieto-Alhambra D, Reyes C, Sainz MS et al (2018) In-hospital care, complications, and 4-month mortality following a hip or proximal femur fracture: the Spanish registry of osteoporotic femur fractures prospective cohort study. Arch Osteoporos 13:96. https://doi.org/10.1007/s11657-018-0515-

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chow SK-H, Qin J, Wong RM-Y et al (2018) One-year mortality in displaced intracapsular hip fractures and associated risk: a report of Chinese-based fragility fracture registry. J Orthop Surg Res 13:235. https://doi.org/10.1186/s13018-018-0936-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hu F, Jiang C, Shen J et al (2012) Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43:676–685. https://doi.org/10.1016/j.injury.2011.05.017

    Article  PubMed  Google Scholar 

  7. Moyet J, Deschasse G, Marquant B et al (2018) Which is the optimal orthogeriatric care model to prevent mortality of elderly subjects post hip fractures? A systematic review and meta-analysis based on current clinical practice. Int Orthop. https://doi.org/10.1007/s00264-018-3928-5

    Article  PubMed  Google Scholar 

  8. Oñativia I, Slulittel PAI, Diaz Dilernia F et al (2018) Outcomes of nondisplaced intracapsular femoral neck fractures with internal screw fixation in elderly patients: a systematic review. Hip Int 28:18–28

    Article  Google Scholar 

  9. Mundi S, Pindiprolu B, Simunovic N, Bhandari M (2014) Similar mortality rates in hip fracture patients over the past 31 years. Acta Orthop 85:54–59. https://doi.org/10.3109/17453674.2013.878831

    Article  PubMed  PubMed Central  Google Scholar 

  10. Judd KT, Christianson E (2015) Expedited operative care of hip fractures results in significantly lower cost of treatment. Iowa Orthop J 35:62–64

    PubMed  PubMed Central  Google Scholar 

  11. Aktselis I, Kokoroghiannis C, Fragkomichalos E et al (2014) Prospective randomised controlled trial of an intramedullary nail versus a sliding hip screw for intertrochanteric fractures of the femur. Int Orthop 38:155–161. https://doi.org/10.1007/s00264-013-2196-7

    Article  Google Scholar 

  12. Hao Z, Wang X, Zhang X (2018) Comparing surgical interventions for intertrochanteric hip fracture by blood loss and operation time: a network meta-analysis. J Orthop Surg Res 13:1–8. https://doi.org/10.1186/s13018-018-0852-8

    Article  Google Scholar 

  13. Henzman C, Ong K, Lau E et al (2015) Complication risk after treatment of intertrochanteric hip fractures in the medicare population. Orthopedics 38:e799–e805. https://doi.org/10.3928/01477447-20150902-58

    Article  PubMed  Google Scholar 

  14. Kouvidis G, Sakellariou VI, Mavrogenis AF et al (2012) Dual lag screw cephalomedullary nail versus the classic sliding hip screw for the stabilization of intertrochanteric fractures. A prospective randomized study. Strateg Trauma Limb Reconstr 7:155–162. https://doi.org/10.1007/s11751-012-0146-3

    Article  CAS  Google Scholar 

  15. Matre K, Havelin LI, Gjertsen JE et al (2013) Intramedullary nails result in more reoperations than sliding hip screws in two-part intertrochanteric fractures trauma. Clin Orthop Relat Res 471:1379–1386. https://doi.org/10.1007/s11999-012-2728-2

    Article  PubMed  Google Scholar 

  16. Parker MJ (2017) Sliding hip screw versus intramedullary nail for trochanteric hip fractures; a randomised trial of 1000 patients with presentation of results related to fracture stability. Injury 48:2762–2767. https://doi.org/10.1016/j.injury.2017.10.029

    Article  PubMed  Google Scholar 

  17. Socci AR, Casemyr NE, Leslie MP, Baumgaertner MR (2017) Implant options for the treatment of intertrochanteric fractures of the hip rationale, evidence, and recommendations. Bone Joint J 99-B:128–133. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0134.R1

    Article  CAS  PubMed  Google Scholar 

  18. Kani KK, Porrino JA, Mulcahy H, Chew FS (2019) Fragility fractures of the proximal femur: review and update for radiologists. Skeletal Radiol 48:29–45. https://doi.org/10.1007/s00256-018-3008-3

    Article  PubMed  Google Scholar 

  19. Khan AZ, Rames RD, Miller AN (2018) Clinical management of osteoporotic fractures. Curr Osteoporos Rep 16:299–311. https://doi.org/10.1007/s11914-018-0443-y

    Article  PubMed  Google Scholar 

  20. Pandarinath R, Amdur R, DeBritz JN, Rao RD (2018) Comparison of short-term complication rates between cephalomedullary hip screw devices and sliding hip screws: an analysis of the national surgical quality improvement program database. J Am Acad Orthop Surg 26:845–851. https://doi.org/10.5435/JAAOS-D-16-00818

    Article  PubMed  Google Scholar 

  21. Huang X, Leung F, Xiang Z et al (2013) Proximal femoral nail versus dynamic hip screw fixation for trochanteric fractures : a meta-analysis of randomized controlled trials. Sci World J 2013:80580

    Google Scholar 

  22. National Institute for Health and Clinical Excellence (2014) Hip fracture: management. National Institute for Health and Clinical Excellence, London

    Google Scholar 

  23. Li J, Zhang L, Zhang H et al (2018) Effect of reduction quality on post-operative outcomes in 31-A2 intertrochanteric fractures following intramedullary fixation: a retrospective study based on computerised tomography findings. Int Orthop. https://doi.org/10.1007/s00264-018-4098-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Morochovic R, Takacova K, Tomocovcivk L et al (2019) Factors influencing femoral neck fracture healing after internal fixation with dynamic locking plate. Arch Orthop Trauma Surg 139:629–638

    Article  Google Scholar 

  25. Avakian Z, Shiraev T, Lam L, Hope N (2012) Dynamic hip screws versus proximal femoral nails for intertrochanteric fractures. ANZ J Surg 82:56–59. https://doi.org/10.1111/j.1445-2197.2011.05929.x

    Article  PubMed  Google Scholar 

  26. Bohl DD, Basques BA, Golinvaux NS et al (2014) Extramedullary compared with intramedullary implants for intertrochanteric hip fractures thirty-day outcomes of 4432 procedures from the ACS NSQIP database. J Bone Joint Surg Am 96:1871–1877. https://doi.org/10.2106/JBJS.N.00041

    Article  PubMed  Google Scholar 

  27. Parker MJ, Cawley S (2017) Sliding hip screw versus the Targon PFT nail for trochanteric hip fractures. Bone Joint J 99B:1210–1215. https://doi.org/10.1302/0301-620X.99B9.BJJ-2016-1279.R1

    Article  Google Scholar 

  28. Parker MJ, Handol H (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary. Acta Radiol 51:828–831. https://doi.org/10.1002/14651858.CD000093.pub5

    Article  Google Scholar 

  29. Zhu Q, Xu X, Yang X et al (2017) Intramedullary nails versus sliding hip screws for AO/OTA 31-A2 trochanteric fractures in adults: a meta-analysis. Int J Surg 43:67–74. https://doi.org/10.1016/j.ijsu.2017.05.042

    Article  PubMed  Google Scholar 

  30. Cho HM, Lee K et al (2016) Clinical and functional outcomes of treatment for type A1 intertrochanteric femoral fracture in elderly patients: comparison of dynamic hip screw and proximal femoral nail antirotation. Hip Pelvis 28:232–242. https://doi.org/10.5371/hp.2016.28.4.232

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kumar R, Singh RN, Singh BN (2012) Comparative prospective study of proximal femoral nail and dynamic hip screw in treatment of intertrochanteric fracture femur. J Clin Orthop Trauma 3:28–36. https://doi.org/10.1016/j.jcot.2011.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  32. Swart E, Makhni EC, Macaulay W et al (2014) Cost-effectiveness analysis of fixation options for intertrochanteric hip fractures. J Bone Joint Surg 96:1612–1620

    Article  Google Scholar 

  33. Krigbaum H, Takemoto S, Kim HT, Kuo AC (2016) Costs and complications of short versus long cephalomedullary nailing of OTA 31-A2 proximal femur fractures in U.S. Veterans. J Orthop Trauma 30:125–129. https://doi.org/10.1097/BOT.0000000000000521

    Article  PubMed  Google Scholar 

  34. Pollmann CT, Røtterud JH, Gjertsen JE et al (2019) Fast track hip fracture care and mortality—an observational study of 2230 patients. BMC Musculoskelet Disord 20:1–10. https://doi.org/10.1186/s12891-019-2637-6

    Article  Google Scholar 

  35. NSQIP (n.d.) American College of Surgeons National Surgical Quality Improvement Program. https://www.facs.org/quality-programs/acs-nsqip? Accessed 25 Aug 2018

  36. Cohen ME, Ko CY, Bilimoria KY et al (2013) Optimizing ACS NSQIP modeling for evaluation of surgical quality and risk: patient risk adjustment, procedure mix adjustment, shrinkage adjustment, and surgical focus. J Am Coll Surg 217:336–346.e1. https://doi.org/10.1016/j.jamcollsurg.2013.02.027

    Article  PubMed  Google Scholar 

  37. Durand WM, Goodman AD, Johnson JP, Daniels AH (2018) Assessment of 30-day mortality and complication rates associated with extended deep vein thrombosis prophylaxis following hip fracture surgery. Injury 49:1141–1148. https://doi.org/10.1016/j.injury.2018.03.019

    Article  PubMed  Google Scholar 

  38. Haughom BD, Basques BA, Hellman MD et al (2018) Do mortality and complication rates differ between periprosthetic and native hip fractures? J Arthroplasty 33:1914–1918. https://doi.org/10.1016/j.arth.2018.01.046

    Article  PubMed  Google Scholar 

  39. Neufeld ME, O’Hara NN, Zhan M et al (2016) Timing of hip fracture surgery and 30-day outcomes. Orthopedics 39:361–368. https://doi.org/10.3928/01477447-20160719-07

    Article  PubMed  Google Scholar 

  40. Pulido L, Parvizi J, Macgibeny M et al (2008) Hospital complications after total joint arthroplasty. J Arthroplasty. https://doi.org/10.1016/j.arth.2008.05.011

    Article  PubMed  Google Scholar 

  41. Harrell FEJ (2015) rms: regression modeling strategies. R package version 4.4-0

    Chapter  Google Scholar 

  42. Bovbjerg P, Froberg L, Schmal H (2019) Short versus long intramedullary nails for treatment of intertrochanteric femur fractures (AO 31-A1 and AO 31-A2): a systematic review. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-019-02495-3

    Article  PubMed  Google Scholar 

  43. Gill J, Jensen L, Chin P et al (2007) Intertrochanteric hip fractures treated with the trochanteric fixation nail and sliding hip screw. J Surg Orthop Adv Summer 16:62–66

    Google Scholar 

  44. Wang Q, Yang X, He HZ et al (2014) Comparative study of interTAN and dynamic hip screw in treatment of femoral intertrochanteric injury and wound. Int J Clin Exp Med 7:5578–5582

    PubMed  PubMed Central  Google Scholar 

  45. Bhandari M, Schemitsch E, Jönsson A et al (2009) Gamma nails revisited: gamma nails versus compression hip screws in the management of intertrochanteric fractures of the hip: a meta-analysis. J Orthop Trauma 23:460–464. https://doi.org/10.1097/BOT.0b013e318162f67f

    Article  Google Scholar 

  46. Utrilla AL, Reig JS, Muñoz FM, Tufanisco CB (2005) Trochanteric Gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma 19:229–233. https://doi.org/10.1097/01.bot.0000151819.95075.ad

    Article  Google Scholar 

  47. Ahrengart L, Törnkvist H, Fornander P et al (2002) A randomized study of the compression hip screw and gamma nail in 426 fractures. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200208000-00024

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas S. Piuzzi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warren, J.A., Sundaram, K., Hampton, R. et al. Cephalomedullary nailing versus sliding hip screws for Intertrochanteric and basicervical hip fractures: a propensity-matched study of short-term outcomes in over 17,000 patients. Eur J Orthop Surg Traumatol 30, 243–250 (2020). https://doi.org/10.1007/s00590-019-02543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-019-02543-y

Keywords

Navigation