Skip to main content
Log in

Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: results from the PREOBE cohort study

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Maternal obesity and gestational diabetes mellitus (GDM) were frequently reported to be risk factors for obesity and diabetes in offspring. Our goal was to study the impact of maternal prepregnancy BMI (pBMI) and GDM on both maternal and cord blood metabolic profiles.

Methods

We used LC–MS/MS to measure 201 metabolites comprising phospholipids (PL), amino acids, non-esterified fatty acids (NEFA), organic acids, acyl carnitines (AC), and Krebs cycle metabolites in maternal plasma at delivery and cord plasma obtained from 325 PREOBE study participants.

Results

Several metabolites were associated with pBMI/GDM in both maternal and cord blood (p < 0.05), while others were specific to either blood sources. BMI was positively associated with leucine, isoleucine, and inflammation markers in both mother and offspring, while β-hydroxybutyric acid was positively associated only in cord blood. GDM showed elevated levels of sum of hexoses, a characteristic finding in both maternal and cord blood. Uniquely in cord blood of offspring born to GDM mothers, free carnitine was significantly lower with the same tendency observed for AC, long-chain NEFA, PL, specific Krebs cycle metabolites, and β-oxidation markers.

Conclusions

Maternal BMI and GDM are associated with maternal and cord blood metabolites supporting the hypothesis of transgenerational cycle of obesity and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390(10113):2627–2642

    Article  Google Scholar 

  2. Huvinen E, Eriksson JG, Stach-Lempinen B, Tiitinen A, Koivusalo SB (2018) Heterogeneity of gestational diabetes (GDM) and challenges in developing a GDM risk score. Acta Diabetol 55(12):1251–1259

    Article  PubMed  CAS  Google Scholar 

  3. Huvinen E, Eriksson JG, Koivusalo SB, Grotenfelt N, Tiitinen A, Stach-Lempinen B (2018) Heterogeneity of gestational diabetes (GDM) and long-term risk of diabetes and metabolic syndrome: findings from the RADIEL study follow-up. Acta Diabetol 55(12):1251–1259

    Article  PubMed  CAS  Google Scholar 

  4. Lowe WL Jr, Bain JR, Nodzenski M (2017) Maternal BMI and glycemia impact the fetal metabolome. Diabet Care 40:902–910

    Article  CAS  Google Scholar 

  5. Kaaja R, Rönnemaa T (2008) Gestational diabetes: pathogenesis and consequences to mother and offspring. Rev Diab Stud 5(4):194–202

    Article  Google Scholar 

  6. Pintaudi B, Fresa R, Dalfrà M, Dodesini AR, Vitacolonna E, Tumminia A, Sciacca L, Lencioni C, Marcone T, Lucisano G, Nicolucci A, Bonomo M, Napoli A, STRONG Study Collaborators (2018) The risk stratification of adverse neonatal outcomes in women with gestational diabetes (STRONG) study. Acta Diabetol 55(12):1261–1273

    Article  PubMed  CAS  Google Scholar 

  7. Leybovitz-Haleluya N, Wainstock T, Landau D, Sheiner E (2018) Maternal gestational diabetes mellitus and the risk of subsequent pediatric cardiovascular diseases of the offspring: a population-based cohort study with up to 18 years of follow up. Acta Diabetol 55(10):1037–1042

    Article  PubMed  CAS  Google Scholar 

  8. Berglund SK, García-Valdés L, Torres-Espinola FJ, Segura MT, Martínez-Zaldívar C, Aguilar MJ, Agil A, Lorente JA, Florido J, Padilla C, Altmäe S, Marcos A, López-Sabater MC, Campoy C, PREOBE Team (2016) Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE). BMC Public Health 16:207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva A, Hod M, Kitzmiler JL, Lowe LP, McIntyre HD, Oats JJ, Omori Y, Schmidt MI (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33(3): 676–682

    Article  PubMed Central  CAS  Google Scholar 

  10. Hellmuth C, Weber M, Koletzko B, Peissner W (2012) Nonesterified fatty acid determination for functional lipidomics. Comprehensive ultrahigh performance liquid chromatography–tandem mass spectrometry quantitation, qualification, and parameter prediction. Anal Chem 84:1483–1490

    Article  PubMed  CAS  Google Scholar 

  11. Rauschert S, Uhl O, Koletzko B, Kirchberg F, Mori TA, Huang RC, Beilin LJ, Hellmuth C, Oddy WH (2016) Lipidomics reveals associations of phospholipids with obesity and insulin resistance in young adults. J Clin Endocrinol Metab 101:871–879

    Article  PubMed  CAS  Google Scholar 

  12. Harder U, Koletzko B, Peissner W (2011) Quantification of 22 plasma amino acids combining derivatization and ion-pair LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 879:495–504

    Article  PubMed  CAS  Google Scholar 

  13. Maeba R, Hara H (2012) Serum choline plasmalogen is a reliable biomarker for atherogenic status. In: Squeri A (ed) Coronary artery disease—new insights and novel approaches. InTech, Rijeka, pp 243–260

    Google Scholar 

  14. Zhang W, Sun G, Aitken D, Likhodii S, Liu M, Martin G, Furey A, Randell E, Rahman P, Jones G, Zhai G (2016) Lysophosphatidylcholines to phosphatidylcholines ratio predicts advanced knee osteoarthritis. Rheumatol 55(9):1566–1574

    Article  CAS  Google Scholar 

  15. Pickens CA, Vazquez AI, Daniel Jones A, Fenton JI (2017) Obesity, adipokines, and C-peptide are associated with distinct plasma and phospholipid profiles in adult males, an untargeted lipidomic approach. Sci Rep 7:6335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kirchberg FF, Brandt S, Moß A, Peissner W, Koenig W, Rothenbacher D, Brenner H, Koletzko B, Hellmuth C, Wabitsch M (2017) Metabolomics reveals an entanglement of fasting leptin concentrations with fatty acid oxidation and gluconeogenesis in healthy children. PLoS One 12(8):e0183185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sampath H, Ntambi JM (2008) Role of stearoyl-CoA desaturase in human metabolic disease. Future Lipidol 3:163–173

    Article  CAS  Google Scholar 

  18. Myatt L, Powell T, Brown L et al (2010) Part I. nutritional regulation and requirements for pregnancy and fetal growth. In: Symonds ME, Ramsay M (eds) Maternal–fetal nutrition during pregnancy and lactation. Cambridge University Press, Cambridge, p 16

    Google Scholar 

  19. Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS, Göring H, Cole SA, Comuzzie AG (2015) Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr 102(2):256–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Newgard CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell metab 15(5):606–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sandler V, Reisetter AC, Bain JR, Muehlbauer MJ, Nodzenski M, Stevens RD, Ilkayeva O, Lowe LP, Metzger BE, Newgard CB, Scholtens DM, Lowe WL Jr, HAPO Study Cooperative Research Group (2017) Association of maternal BMI and insulin resistance with the maternal metabolome and newborn outcomes. Diabetologia 60:518–530

    Article  PubMed  CAS  Google Scholar 

  22. Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, Jansson T, Powell TL (2013) Activation of placental mtor signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 98:105–113

    Article  PubMed  CAS  Google Scholar 

  23. Lindsay KL, Hellmuth C, Uhl O, Buss C, Wadhwa PD, Koletzko B, Entringer S (2015) Longitudinal metabolomic profiling of amino acids and lipids across healthy pregnancy. PLoS One 10:e0145794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T (2015) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16:378–400

    Article  CAS  Google Scholar 

  25. Zeitoun-Ghandour S, Leszczyszyn OI, Blindauer CA, Geier FM, Bundy JG, Stürzenbaum SR (2011) C. elegans metallothioneins: response to and defence against ROS toxicity. Mol Biosyst 7(8):2397–2406

    Article  PubMed  CAS  Google Scholar 

  26. Gao X, Zhang W, Yongbo W, Pedram P, Cahill F, Zhai G, Randell EW, Gulliver WP, Sun G (2016) Serum metabolic biomarkers distinguish metabolically healthy peripherally obese from unhealthy centrally obese individuals. Nutr Metab 13:33

    Article  CAS  Google Scholar 

  27. Kim JY, Park JY, Kim OY, Ham BM, Kim HJ, Kwon DY, Jang Y, Lee JH (2010) Metabolic profiling of plasma in overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC-Q-TOF MS). J Proteome Res 9:4368–4375

    Article  PubMed  CAS  Google Scholar 

  28. Dudzik D, Zorawski M, Skotnicki M, Zarzycki W, Kozlowska G, Bibik-Malinowska K, Vallejo M, García A, Barbas C, Ramos MP (2014) Metabolic fingerprint of gestational diabetes mellitus. J Proteom 103:57–71

    Article  CAS  Google Scholar 

  29. Curcic S, Holzer M, Pasterk L, Knuplez E, Eichmann TO, Frank S, Zimmermann R, Schicho R, Heinemann A, Marsche G (2017) Secretory phospholipase A2 modifed HDL rapidly and potently suppresses platelet activation. Sci Rep 7:8030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hellmuth C, Lindsay KL, Uhl O (2017) Association of maternal prepregnancy BMI with metabolomic profile across gestation. Int J Obes (Lond) 41(1):159–169

    Article  CAS  Google Scholar 

  31. Herrera E (2002) Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 19(1):43–55

    Article  PubMed  CAS  Google Scholar 

  32. Scholtens DM, Muehlbauer MJ, Daya NR, Stevens RD, Dyer AR, Lowe LP, Metzger BE, Newgard CB, Bain JR, Lowe WL Jr, HAPO Study Cooperative Research Group (2014) Metabolomics reveals broad-scale metabolic perturbations in hyperglycemic mothers during pregnancy. Diabetes Care 37(1):158–166

    Article  PubMed  CAS  Google Scholar 

  33. Day PE, Cleal JK, Lofthouse EM, Hanson MA, Lewis RM (2013) What factors determine placental glucose transfer kinetics? Placenta 34:953–958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gaither K, Quraishi AN, Illsley NP (1999) Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab 84:695–701

    PubMed  CAS  Google Scholar 

  35. Obeid R, Herrmann W (2009) Homocysteine and lipids: S-adenosyl methionine as a key intermediate. FEBS Lett 583:1215–1225

    Article  PubMed  CAS  Google Scholar 

  36. Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, Mason A, Vance DE (2006) The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 3(5):321–331

    Article  PubMed  CAS  Google Scholar 

  37. Braverman NE, Moser AB (2012) Review Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822(9):1442–1452

    Article  PubMed  CAS  Google Scholar 

  38. Allalou A, Nalla A, Prentice KJ (2016) A predictive metabolic signature for the transition from gestational diabetes mellitus to type 2 diabetes. Diabetes 65:2529–2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Evangeliou A, Gourgiotis D, Kragianni C, Markouri M, Anogianaki N, Mamoulakis D, Maropoulos G, Tsakalidis C, Frentzayias A, Nicolaidou P (2010) Carnitine status and lactate increase in patients with type I juvenile diabetes. Minerva Pediatr 62(6):551–557

    PubMed  CAS  Google Scholar 

  40. Pappa KI, Anagnou NP, Salamalekis E, Bikouvarakis S, Maropoulos G, Anogianaki N, Evangeliou A, Koumantakis E (2005) Gestational diabetes exhibits lack of carnitine deficiency despite relatively low carnitine levels and alterations in ketogenesis. J Matern Fetal Neonatal Med 17:63–68

    Article  PubMed  CAS  Google Scholar 

  41. Agakidou E, Diamanti E, Papoulidis I, Papakonstantinou E, Stergioudas I, Sarafidis K, Drossou V, Evangeliou A (2013) Effect of gestational diabetes on circulating levels of maternal and neonatal carnitine. J Diabetes Metab 4:250

    Article  CAS  Google Scholar 

  42. Visiedo F, Bugatto F, Sanchez V, Cozar-Castellano I, Bartha JL, Perdomo G (2013) High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta. Am J Physiol Endocrinol Metab 305:E205–E212

    Article  PubMed  CAS  Google Scholar 

  43. Lackey DE, Lynch CJ, Olson KC, Mostaedi R, Ali M, Smith WH, Karpe F, Humphreys S, Bedinger DH, Dunn TN, Thomas AP, Oort PJ, Kieffer DA, Amin R, Bettaieb A, Haj FG, Permana P, Anthony TG, Adams SH (2013) Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity. Am J Physiol Endocrinol Metab 304:E1175–E1187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, Young JF (2010) Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. Int J Epidemiol 39(6):1647–1655

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu Y, Dong Y, Atefi M, Liu Y, Elshimali Y, Vadgama JV (2016) Lactate, a neglected factor for diabetes and cancer interaction. Mediators Inflamm 2016:6456018

    Google Scholar 

Download references

Acknowledgements

The authors thank the study participants, the obstetricians, paediatricians and technicians of the EURISTIKOS team, and the PREOBE team at the University of Granada. We are grateful to Stephanie Winterstetter, Alexander Haag and Tina Honsowitz for their support in the analysis. The data presented are part of the PhD thesis by Linda Marchioro at the Medical Faculty, LMU.

Funding

This work was supported by Andalusian Ministry of Economy, Science and Innovation, PREOBE Excellence Project (Ref. P06-CTS-02341), Spanish Ministry of Economy and Competitiveness (Ref. BFU2012-40254-C03-01 and Ref. SAF2015-69265-C2-2-R), the European Research Council Advanced Grant META-GROWTH (ERC-2012-AdG 322605), European Commission research projects EarlyNutrition, FP7-FP7 KBBE-2011-1 (289346 y) and Horizon2020 DynaHEALTH (633595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berthold Koletzko.

Ethics declarations

Conflict of interest

None of the authors reports conflicts of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the bioethical Committees for clinical research of the Clinical University Hospital San Cecilio, the Mother-Infant University Hospital of Granada, and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Written informed consent was obtained from all participants at the study entry.

Additional information

Managed by Antonio Secchi.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 290 KB)

Supplementary material 2 (DOCX 68 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokry, E., Marchioro, L., Uhl, O. et al. Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: results from the PREOBE cohort study. Acta Diabetol 56, 421–430 (2019). https://doi.org/10.1007/s00592-019-01291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01291-z

Keywords

Navigation