Skip to main content
Log in

The Dynamic Mechanical Properties of a Hard Rock Under True Triaxial Damage-Controlled Dynamic Cyclic Loading with Different Loading Rates: A Case Study

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Highlights

  • A dynamic constitutive model for rock materials suited to dynamic cyclic loading was established.

  • The numerical tests on a hard rock under true triaxial dynamic cyclic loading with different loading rates were conducted.

  • The dynamic deformation and mechanical properties of a hard rock were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Abbreviations

σ 1, σ 2, σ 3 :

Three principal stresses

\(\dot{\varepsilon }\),\(\dot{\varepsilon }_{s}\) :

Strain rate and static strain rate, respectively

s :

Similarity-center

\(\alpha\) :

Geometric centre of the normal-yield surface

\(\overline{I}_{1}\),\(\overline{J}_{2}\) :

First invariant of the current stress tensor and second invariant of the current deviatoric stress, respectively

\(\overline{\sigma }\) :

Current stress considering the geometric centre of the sub-loading surface

f :

Yield surface function

R :

Similarity ratio

\(c\),\(\phi\) :

Cohesion and internal friction angle of rock, respectively

\(\phi_{0}\),\(\phi_{r}\) :

Initial and residual internal friction angles, respectively

\(\kappa_{{\phi_{0} }}\),\(\kappa_{{\phi_{1} }}\) :

Thresholds at which the internal friction angle starts to change and reaches its residual value, respectively

\(\kappa\) :

Internal variable

\(d\varepsilon^{p}\) :

Is the increment of plastic strain

\(c_{0}\),\(c_{r}\) :

Initial and residual cohesion

\(\kappa_{{c_{0} }}\),\(\kappa_{{c_{1} }}\) :

Thresholds at which the cohesion starts to change and reach its residual value, respectively

\(\kappa_{E}\) :

Threshold at which the Young’s modulus reaches its residual value under static strain conditions

\(E_{s}\), \(E_{E}\) :

Initial and residual Young’s moduli under static strain conditions, respectively

\(D^{el}\) :

Elastic matrix

dt :

Time increment

\(\chi\) :

Maximum value of the ratio of the size of the similarity-centre surface to that of the normal-yield surface

\(g\left( {\sigma_{n + 1}^{k + 1} } \right)_{{\text{int}}}\), \(g\left( {\sigma_{n + 1}^{k + 1} } \right)_{ext}\) :

Internal force and external force of analysis object, respectively

\(E_{n + }\), \(E_{n - }\) :

Loading deformation modulus and unloading deformation modulus of rock in the \(\sigma_{1}\) direction at the nth loading stress level, respectively

References

  • Bagde MN, Petroš V (2005) Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading. Int J Rock Mech Min Sci 42(2):237–250

    Article  Google Scholar 

  • Browning J, Meredith PG, Stuart CE, Healy D, Harland S, Mitchell TM (2017) Acoustic characterization of crack damage evolution in sandstone deformed under conventional and true triaxial loading: crack damage evolution in sandstone. J Geophys Res Solid Earth 122(6):4395–4412

    Article  Google Scholar 

  • Browning J, Meredith PG, Stuart CE, Healy D, Harland S, Mitchell TM (2018) A directional crack damage memory effect in sandstone under true triaxial loading. Geophys Res Lett 45:6878–6886

    Article  Google Scholar 

  • CEB (Comite Euro-international du Beton) (1988) Concrete structures under impact and impulsive loading[S]. Lausanne:Bulletin d′information, No 187, CEB Comite′ EuroInternational du Be′ ton

  • Duan H, Yang Y (2018) Deformation and dissipated energy of sandstone under uniaxial cyclic loading. Geotech Geol Eng 36:611–619

    Article  Google Scholar 

  • Feng XT, Gao Y, Zhang X, Wang Z, Zhao Y, Han Q (2020) Evolution of the mechanical and strength parameters of hard rocks in the true triaxial cyclic loading and unloading tests. Int J Rock Mech Min Sci 131:104349

    Article  Google Scholar 

  • Fuenkajorn K, Phueakphum D (2010) Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Eng Geol 112(1–4):43–52

    Article  Google Scholar 

  • Gao Y, Feng XT (2019) Study on damage evolution of intact and jointed marble subjected to cyclic true triaxial loading. Eng Fract Mech 215:224–234

    Article  Google Scholar 

  • Gong FQ, Wang J, Li XB (2018) The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials. Chin J Rock Mech Eng 37(7):1586–1595

    Google Scholar 

  • Grady DE, Kipp ME (1980) Continuum modeling of explosive fracture in oil shale. Int J Rock Mech Min Sci 17(2):147–157

    Article  Google Scholar 

  • Hashiguchi K (2009) Elastoplasticity theory. Springer, Berlin

    Book  Google Scholar 

  • Heap MJ, Faulkner DR, Meredith PG, Vinciguerra S (2010) Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation. Geophys J Int 183:225–236

    Article  Google Scholar 

  • Hu G, Zhao C, Chen N, Chen K, Wang T (2019) Characteristics, mechanisms and prevention modes of debris flows in an arid seismically active region along the Sichuan-Tibet railway route, China: a case study of the Basu-Ranwu section, southeastern Tibet. Environ Earth Sci 78:564

    Article  Google Scholar 

  • Hu L, Li Y, Liang X, Tang C, Yan L (2020) Rock damage and energy balance of strainbursts induced by low frequency seismic disturbance at high static stress. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-020-02197-x

    Article  Google Scholar 

  • Li HB, Zhao J, Li TJ (2000) Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int J Rock Mech Min Sci 37(6):923–935

    Article  Google Scholar 

  • Li N, Chen W, Zhang P, Swoboda G (2001) The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading. Int J Rock Mech Min Sci 38(7):1071–1079

    Article  Google Scholar 

  • Li X, Du K, Li D (2015) True triaxial strength and failure modes of cubic rock specimens with unloading the minor principal stress. Rock Mech Rock Eng 48:2185–2196

    Article  Google Scholar 

  • Li Y, Zhang S, Zhang X (2018) Classification and fractal characteristics of coal rock fragments under uniaxial cyclic loading conditions. Arab J Geosci 11(9):201

    Article  Google Scholar 

  • Liu K, Zhao J (2021) Progressive damage behaviours of triaxially confined rocks under multiple dynamic loads. Rock Mech Rock Eng 54:3327–3358. https://doi.org/10.1007/s00603-021-02408-z

    Article  Google Scholar 

  • Liu Y, Dai F, Zhao T, Xu N (2017a) Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression. Rock Mech Rock Eng 50(01):89–112

    Article  Google Scholar 

  • Liu Y, Dai F, Zhao T, Xu NW (2017b) Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression. Rock Mech Rock Eng 50(1):89–112

    Article  Google Scholar 

  • Luo D, Su G, Zhao G (2020) True-triaxial experimental study on mechanical behaviours and acoustic emission characteristics of dynamically induced rock failure. Rock Mech Rock Eng 53:1205–1223

    Article  Google Scholar 

  • Ma LJ, Liu XY, Wang MY, Xu HF et al (2013) Experimental investigation of the mechanical properties of rock salt under triaxial cyclic loading. Int J Rock Mech Min Sci 62:34–41

    Article  Google Scholar 

  • Martin C, Chandler N (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci 31(6):643–659

    Article  Google Scholar 

  • Meng Q, Zhang M, Han L, Pu H, Nie T (2016) Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression. Rock Mech Rock Eng 49(10):1–14

    Article  Google Scholar 

  • Min M, Jiang B, Lu M et al (2020) An improved strain-softening model for Beishan granite considering the degradation of elastic modulus. Arab J Geosci 13:244. https://doi.org/10.1007/s12517-020-5259-2

    Article  Google Scholar 

  • Ray SK, Sarkar M, Singh TN (1999) Effect of cyclic loading and strain rate on the mechanical behaviour of sandstone. Int J Rock Mech Min Sci 36(4):543–549

    Article  Google Scholar 

  • Shi CH, Ding ZD, Lei MF, Peng LM (2014) Accumulated deformation behavior and computational model of water-rich mudstone under cyclic loading. Rock Mech Rock Eng 47(4):1485–1491

    Article  Google Scholar 

  • Song H, Zhang H, Fu D, Zhang Q (2016) Experimental analysis and characterization of damage evolution in rock under cyclic loading. Int J Rock Mech Min Sci 88:157–164

    Article  Google Scholar 

  • Wang Z, Li S, Qiao L, Zhao J (2013) Fatigue Behavior of granite subjected to cyclic loading under triaxial compression condition. Rock Mech Rock Eng 46(6):1603–1615

    Article  Google Scholar 

  • Yang SQ, Ranjith PG, Huang YH, Yin PF et al (2015) Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading. Geophys J Int 201:662–682

    Article  Google Scholar 

  • Yang SQ, Tian WL, Ranjith PG (2017) Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading. Rock Mech Rock Eng 50:2871–2889

    Article  Google Scholar 

  • Yang D, Zhang D, Niu S, Duan Y et al (2018) Experiment and study on mechanical property of sandstone post-peak under the cyclic loading and unloading. Geotech Geol Eng 36:1609–1620

    Article  Google Scholar 

  • Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478

    Article  Google Scholar 

  • Zhang K, Zhou H, Feng XT, Shao JF, Yang YS, Zhang YG (2010) Experimental research on elastoplastic coupling character of marble. Rock Soil Mech 31(8):2425–2434

    Google Scholar 

  • Zhao J, Li HB, Wu MB, Li TJ (1999) Dynamic uniaxial compression tests on a granite. Int J Rock Mech Min Sci 36(2):273–277

    Article  Google Scholar 

  • Zhao J, Feng XT, Yang C et al (2021) Study on time-dependent fracturing behaviour for three different hard rock under high true triaxial stress. Rock Mech Rock Eng 54:1239–1255

    Article  Google Scholar 

  • Zhou Y, Sheng Q, Li N, Fu X (2019) Numerical investigation of the deformation properties of rock materials subjected to cyclic compression by the finite element method. Soil Dyn Earthq Eng 126:105795

    Article  Google Scholar 

  • Zhou Y, Sheng Q, Li N, Fu X et al (2020a) A constitutive model for rock materials subjected to triaxial cyclic compression. Mech Mater 144:103341

    Article  Google Scholar 

  • Zhou Y, Sheng Q, Li N, Fu X (2020b) The influence of strain rate on the energy characteristics and damage evolution of rock materials under dynamic uniaxial compression. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-020-02128-w

    Article  Google Scholar 

  • Zhou Y, Sheng Q, Li N, Fu X (2020c) Numerical analysis of the mechanical properties of rock materials under tiered and multi-level cyclic load regimes. Soil Dyn Earthq Eng 135:106186

    Article  Google Scholar 

Download references

Acknowledgements

The work reported in this paper is financially supported by the National Natural Science Foundation of China (No.51809258). The authors are thankful for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest relevant to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Numerical Implementation of the Dynamic Constitutive Model

Based on the idea of elastic prediction-plasticity correction, through self-programming Finite Element Method (FEM), the flow of the numerical implementation of the dynamic constitutive model is introduced in detail (as shown in Fig. 

Fig. 15
figure 15

Flow chart of numerical implementation of the dynamic constitutive model

15).

1. Setting the initial internal variables:

$$ s_{n + 1}^{k} = s_{n} ,\alpha_{n + 1}^{k} = \alpha_{n} ,R_{n + 1}^{k} = R_{n} ,Q_{n + 1}^{k} = Q_{n} ,\kappa_{n + 1}^{k} = \kappa_{n} ,\dot{\varepsilon }_{n + 1}^{k} = \dot{\varepsilon }_{n} ,\left( {D^{el} } \right)_{n + 1}^{k} = \left( {D^{el} } \right)_{n} $$
(11)

where n is the time step is and k is iterative step. \(D^{el}\) is the elastic matrix.

2. Elastic prediction: the stress can be calculated as followed.

$$ \sigma_{n + 1}^{k + 1} = \sigma_{n + 1}^{k} + \left( {D^{el} } \right)_{n + 1}^{k} d\varepsilon_{n + 1}^{k + 1} $$
(12)
$$ \overline{\sigma }_{n + 1}^{k + 1} = \sigma_{n + 1}^{k} { - }R_{n + 1}^{k} \alpha_{n + 1}^{k} + s_{n + 1}^{k} \left( {R_{n + 1}^{k} - 1} \right) $$
(13)

where \(d\varepsilon\) is the strain increment.

3. Yield judgments: if \(\left\| {\frac{{d\varepsilon_{n + 1}^{k + 1} }}{dt}} \right\| < \dot{\varepsilon }_{n + 1}^{k}\), then \(\dot{\varepsilon }_{n + 1}^{k + 1} = \dot{\varepsilon }_{n + 1}^{k}\); otherwise, \(\dot{\varepsilon }_{n + 1}^{k + 1} = \left\| {\frac{{d\varepsilon_{n + 1}^{k} }}{dt}} \right\|\)

$$ {\text{If}}\,\,\,f\left( {\overline{\sigma }_{n + 1}^{k + 1} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right) - R_{n + 1}^{k} Q_{n + 1}^{k} \le 0 $$
(14)

then the stress is the calculated stress and go to (iii) in Step 4.; otherwise, the corresponding plasticity correction should be done. Where dt is the time increment.

4. Plasticity correction:

i. Solving the plasticity factor:

$$ d\lambda_{n + 1}^{k + 1} = \frac{{f\left( {\overline{\sigma }_{n + 1}^{k + 1} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right) - R_{n + 1}^{k} Q\left( {\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\left\| {\frac{{\partial f\left( {\overline{\sigma }_{n + 1}^{k + 1} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial \overline{\sigma }_{n + 1}^{k + 1} }}} \right\|\left( {M_{n + 1}^{k} + N_{n + 1}^{k} \cdot \left( {D^{el} } \right)_{n + 1}^{k} \cdot N_{n + 1}^{k} } \right)}} $$
(15)
$$ N_{n + 1}^{k} = \frac{{\frac{{\partial f\left( {\overline{\sigma }_{n + 1}^{k + 1} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial \overline{\sigma }_{n + 1}^{k + 1} }}}}{{\left\| {\frac{{\partial f\left( {\overline{\sigma }_{n + 1}^{k + 1} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial \overline{\sigma }_{n + 1}^{k + 1} }}} \right\|}} $$
(16)
$$ M_{n + 1}^{k} = N_{n + 1}^{k} \cdot \left\{ \begin{gathered} \frac{{\left( {{\raise0.7ex\hbox{${\partial Q_{n + 1}^{k} }$} \!\mathord{\left/ {\vphantom {{\partial Q_{n + 1}^{k} } {\partial \kappa_{n + 1}^{k} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial \kappa_{n + 1}^{k} }$}}} \right)}}{{Q_{n + 1}^{k} }}L_{n + 1}^{k} \frac{{\overline{\sigma }_{n + 1}^{k + 1} }}{{R_{n + 1}^{k} }} + {\raise0.7ex\hbox{${\partial \alpha_{n + 1}^{k} }$} \!\mathord{\left/ {\vphantom {{\partial \alpha_{n + 1}^{k} } {\partial \kappa_{n + 1}^{k} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial \kappa_{n + 1}^{k} }$}} - u\ln R_{n + 1}^{k} \frac{{\tilde{\sigma }_{n + 1}^{k} }}{{R_{n + 1}^{k} }} + C\left( {1 - R_{n + 1}^{k} } \right)\left[ {\frac{{\overline{\sigma }_{n + 1}^{k + 1} }}{{R_{n + 1}^{k} }} - \frac{{\hat{s}_{n + 1}^{k} }}{\chi }} \right] - \hfill \\ \frac{{1 - R_{n + 1}^{k} }}{{\chi Q_{n + 1}^{k} }}\frac{{\partial f\left( {s_{n + 1}^{k} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial \kappa_{n + 1}^{k} }}W_{n + 1}^{k} \hat{s}_{n + 1}^{k} - \frac{1}{{R_{n + 1}^{k} Q_{n + 1}^{k} }}\frac{{\partial f\left( {\overline{\sigma }_{n + 1}^{k + 1} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial \kappa_{n + 1}^{k} }}L_{n + 1}^{k} \overline{\sigma }_{n + 1}^{k + 1} \hfill \\ \end{gathered} \right\} $$
(17)
$$ L_{n + 1}^{k} = G\sqrt {\frac{2}{3}\left( {K \cdot \frac{{\partial f\left( {\overline{\sigma }_{n + 1}^{k + 1} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial \overline{\sigma }_{n + 1}^{k + 1} }}} \right)\left( {K \cdot \frac{{\partial f\left( {\overline{\sigma }_{n + 1}^{k + 1} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial \overline{\sigma }_{n + 1}^{k + 1} }}} \right)} $$
(18)
$$ W_{n + 1}^{k} = G\sqrt {\frac{2}{3}\left( {K \cdot \frac{{\partial f\left( {s_{n + 1}^{k} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial s_{n + 1}^{k} }}} \right)\left( {K \cdot \frac{{\partial f\left( {s_{n + 1}^{k} ,\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k} } \right)}}{{\partial s_{n + 1}^{k} }}} \right)} $$
(19)
$$ \hat{s}_{n + 1}^{k} = s_{n + 1}^{k} - \alpha_{n + 1}^{k} $$
(20)
$$ \tilde{\sigma }_{n + 1}^{k} = \sigma_{n + 1}^{k} - s_{n + 1}^{k} $$
(21)

where \(\chi\) is the maximum value of the ratio of the size of the similarity-centre surface to that of the normal-yield surface. u and C are material parameters.

ii. Updating the internal variables

$$ {\text{d}}\varepsilon_{n + 1}^{{p\left( {k + 1} \right)}} = {\text{d}}\lambda_{n + 1}^{k + 1} N_{n + 1}^{k} $$
(22)
$$ \kappa_{n + 1}^{k + 1} = \kappa_{n + 1}^{k} + G\sqrt {\frac{2}{3}\left( {d\varepsilon_{n + 1}^{p(k + 1)} - \frac{1}{3}tr\left( {d\varepsilon_{n + 1}^{p(k + 1)} } \right)} \right)\left( {d\varepsilon_{n + 1}^{p(k + 1)} - \frac{1}{3}tr\left( {d\varepsilon_{n + 1}^{p(k + 1)} } \right)} \right)} $$
(23)
$$ \left( {D^{el} } \right)_{n + 1}^{k + 1} = \left\{ {\begin{array}{*{20}c} {\left( {D^{el} } \right)_{0} \left( {a_{0} \left( {\lg \left( {\frac{{\dot{\varepsilon }_{n + 1}^{k + 1} }}{{\dot{\varepsilon }_{s} }}} \right)} \right)^{b} + 1} \right) \, \kappa = 0 \, } \\ {\left( {D^{el} } \right)_{0} \left( {a_{0} \left( {\lg \left( {\frac{{\dot{\varepsilon }_{n + 1}^{k + 1} }}{{\dot{\varepsilon }_{s} }}} \right)} \right)^{b} + 1} \right)\left( {1 - \left( {1 - \frac{{E_{E} }}{{E_{s} }}} \right)\frac{{\kappa_{n + 1}^{k + 1} }}{{\kappa_{E} }}} \right){ 0} < \kappa_{n + 1}^{k + 1} \le \kappa_{E} \, } \\ {\left( {D^{el} } \right)_{0} \left( {a_{0} \left( {\lg \left( {\frac{{\dot{\varepsilon }_{n + 1}^{k + 1} }}{{\dot{\varepsilon }_{s} }}} \right)} \right)^{b} + 1} \right)\left( {\frac{{E_{E} }}{{E_{s} }}} \right) \, \kappa_{n + 1}^{k + 1} > \kappa_{E} } \\ \end{array} } \right. $$
(24)
$$ \sigma_{n + 1}^{k + 1} = \sigma_{n + 1}^{k} + \left( {D^{el} } \right)_{n + 1}^{k} \left( {d\varepsilon_{n + 1}^{k + 1} { - }d\varepsilon_{n + 1}^{{p\left( {k + 1} \right)}} } \right) $$
(25)
$$ c\left( {\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k + 1} } \right) = \left\{ {\begin{array}{*{20}c} {c_{0} \left( {d\lg \left( {\frac{{\dot{\varepsilon }_{n + 1}^{k + 1} }}{{\dot{\varepsilon }_{s} }}} \right) + 1} \right) \, \left( {\kappa_{n + 1}^{k + 1} \le \kappa_{{c_{0} }} } \right)} \\ \begin{gathered} c_{0} \left( {d\lg \left( {\frac{{\dot{\varepsilon }_{n + 1}^{k + 1} }}{{\dot{\varepsilon }_{s} }}} \right) + 1} \right)\left( {\frac{{c_{r} }}{{c_{0} }} \, + \, \frac{{\kappa_{{c_{1} }} - \kappa_{n + 1}^{k + 1} }}{{\kappa_{{c_{1} }} - \kappa_{{c_{0} }} }}\left( {1 - \frac{{c_{r} }}{{c_{0} }}} \right)} \right) \, \left( {\kappa_{{c_{0} }} < \kappa_{n + 1}^{k + 1} < \kappa_{{c_{1} }} } \right) \, \hfill \\ c_{r} \left( {d\lg \left( {\frac{{\dot{\varepsilon }_{n + 1}^{k + 1} }}{{\dot{\varepsilon }_{s} }}} \right) + 1} \right) \, \left( {\kappa_{n + 1}^{k + 1} > \kappa_{{c_{1} }} } \right) \, \hfill \\ \end{gathered} \\ \end{array} } \right. $$
(26)
$$ \phi_{n + 1}^{k + 1} = \left\{ {\begin{array}{*{20}c} \begin{gathered} \phi_{0} \, \left( {\kappa_{n + 1}^{k + 1} \le \kappa_{{\phi_{0} }} } \right) \hfill \\ \phi_{0} + \frac{{\kappa_{{\phi_{0} }} - \kappa_{n + 1}^{k + 1} }}{{\kappa_{{\phi_{0} }} - \kappa_{{\phi_{1} }} }}\left( {\phi_{r} - \phi_{0} } \right) \, \left( {\kappa_{{\phi_{0} }} < \kappa_{n + 1}^{k + 1} < \kappa_{{\phi_{1} }} } \right) \hfill \\ \end{gathered} \\ {\phi_{r} \, \left( {\kappa_{n + 1}^{k + 1} > \kappa_{{\phi_{1} }} } \right) \, } \\ \end{array} } \right. $$
(27)
$$ Q_{n + 1}^{k + 1} = \frac{{6c\left( {\dot{\varepsilon }_{n + 1}^{k + 1} ,\kappa_{n + 1}^{k + 1} } \right)\cos \phi_{n + 1}^{k + 1} }}{{\sqrt 3 \left( {3 - \sin \phi_{n + 1}^{k + 1} } \right)}} $$
(28)
$$ \alpha_{n + 1}^{k + 1} = \alpha_{n + 1}^{k} + a\left( {rQ_{n + 1}^{k + 1} N_{n + 1}^{k} - \sqrt{\frac{2}{3}} \alpha_{n + 1}^{k} } \right)\left\| {d\varepsilon_{n + 1}^{p(k + 1)} } \right\| $$
(29)
$$ s_{n + 1}^{k + 1} = s_{n + 1}^{k} + \left( {C\left[ {\frac{{\overline{\sigma }_{n + 1}^{k + 1} }}{{R_{n + 1}^{k} }} - \frac{{\hat{s}_{n + 1}^{k} }}{\chi }} \right] + {\raise0.7ex\hbox{${\partial \alpha_{n + 1}^{k + 1} }$} \!\mathord{\left/ {\vphantom {{\partial \alpha_{n + 1}^{k + 1} } {\partial \kappa_{n + 1}^{k + 1} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial \kappa_{n + 1}^{k + 1} }$}} + \frac{{\left( {{\raise0.7ex\hbox{${\partial Q_{n + 1}^{k + 1} }$} \!\mathord{\left/ {\vphantom {{\partial Q_{n + 1}^{k + 1} } {\partial \kappa_{n + 1}^{k + 1} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\partial \kappa_{n + 1}^{k + 1} }$}}} \right)}}{{Q_{n + 1}^{k + 1} }}\hat{s}_{n + 1}^{k} } \right)\left\| {d\varepsilon_{n + 1}^{{p\left( {k + 1} \right)}} } \right\| $$
(30)

where a and r are material parameters. \(\left( {D^{el} } \right)_{0}\) is the initial elastic matrix.

iii. Solving similarity ratio R:

$$ R_{n + 1}^{k + 1} = \frac{{ - B_{n + 1}^{k + 1} + \sqrt {B_{n + 1}^{{\mathop {k + 1}\nolimits^{2} }} - 4A_{n + 1}^{k + 1} z_{n + 1}^{k + 1} } }}{{2A_{n + 1}^{k + 1} }} $$
(31)
$$ A_{n + 1}^{k + 1} = \frac{1}{2}\left\| {\left( {s_{n + 1}^{k + 1} { - }\alpha_{n + 1}^{k + 1} } \right)^{\prime } } \right\|^{2} - 9\left( {\beta_{n + 1}^{k + 1} } \right)^{2} \left( {s_{n + 1}^{k + 1} { - }\alpha_{n + 1}^{k + 1} } \right)_{m}^{2} - \left( {Q_{n + 1}^{k + 1} } \right)^{2} + 6\beta_{n + 1}^{k + 1} Q_{n + 1}^{k + 1} \left( {s_{n + 1}^{k + 1} { - }\alpha_{n + 1}^{k + 1} } \right)_{m} $$
(32)
$$ B_{n + 1}^{k + 1} = \left( {\left( {s_{n + 1}^{k + 1} - \alpha_{n + 1}^{k + 1} } \right)^{\prime } \cdot \left( {\sigma_{n + 1}^{k + 1} { - }s_{n + 1}^{k + 1} } \right)^{\prime } } \right) - 18\left( {\beta_{n + 1}^{k + 1} } \right)^{2} \left( {s_{n + 1}^{k + 1} - \alpha_{n + 1}^{k + 1} } \right)_{m} \left( {\sigma_{n + 1}^{k + 1} { - }s_{n + 1}^{k + 1} } \right)_{m} + 6\beta_{n + 1}^{k + 1} Q_{n + 1}^{k + 1} \left( {\sigma_{n + 1}^{k + 1} - s_{n + 1}^{k + 1} } \right)_{m} $$
(33)
$$ z_{n + 1}^{k + 1} = \frac{1}{2}\left\| {\left( {\sigma_{n + 1}^{k + 1} - s_{n + 1}^{k + 1} } \right)^{\prime } } \right\|^{2} - 9\left( {\beta_{n + 1}^{k + 1} } \right)^{2} \left( {\sigma_{n + 1}^{k + 1} - s_{n + 1}^{k + 1} } \right)_{m}^{2} $$
(34)

where \(\left( {} \right)_{m}\) represents the mean value, and \(\left( {} \right)^{\prime }\) represents the deviatoric stress.

Determining balance:

$$ {\text{If}}\,\,\,\left\| {g\left( {\sigma_{n + 1}^{k + 1} } \right)_{{\text{int}}} - g\left( {\sigma_{n + 1}^{k + 1} } \right)_{ext} } \right\| < ToL $$
(35)

the process proceeds to the next step [Step (1)], until the end. Otherwise, jump to Step (2) to continue the iteration. Where \(g\left( {\sigma_{n + 1}^{k + 1} } \right)_{{\text{int}}}\), \(g\left( {\sigma_{n + 1}^{k + 1} } \right)_{ext}\) are the internal force and external force of analysis object, respectively, and \(ToL\) is a permissible minimum (set to 10–5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Sheng, Q., Li, N. et al. The Dynamic Mechanical Properties of a Hard Rock Under True Triaxial Damage-Controlled Dynamic Cyclic Loading with Different Loading Rates: A Case Study. Rock Mech Rock Eng 55, 2471–2492 (2022). https://doi.org/10.1007/s00603-021-02756-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-021-02756-w

Keywords

Navigation